
[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 589 589–595

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 5 2010, pages 589–595
doi:10.1093/bioinformatics/btp698

Sequence analysis Advance Access publication January 15, 2010

Fast and accurate long-read alignment with Burrows–Wheeler
transform
Heng Li and Richard Durbin∗
Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
Associate Editor: Dmitrij Frishman

ABSTRACT

Motivation: Many programs for aligning short sequencing reads to
a reference genome have been developed in the last 2 years. Most of
them are very efficient for short reads but inefficient or not applicable
for reads >200 bp because the algorithms are heavily and specifically
tuned for short queries with low sequencing error rate. However,
some sequencing platforms already produce longer reads and others
are expected to become available soon. For longer reads, hashing-
based software such as BLAT and SSAHA2 remain the only choices.
Nonetheless, these methods are substantially slower than short-read
aligners in terms of aligned bases per unit time.
Results: We designed and implemented a new algorithm, Burrows-
Wheeler Aligner’s Smith-Waterman Alignment (BWA-SW), to align
long sequences up to 1 Mb against a large sequence database (e.g.
the human genome) with a few gigabytes of memory. The algorithm
is as accurate as SSAHA2, more accurate than BLAT, and is several
to tens of times faster than both.
Availability: http://bio-bwa.sourceforge.net
Contact: rd@sanger.ac.uk

Received on September 19, 2009; revised on November 24, 2009;
accepted on December 16, 2009

1 INTRODUCTION
Following the development of sensitive local alignment software,
such as FASTA (Pearson and Lipman, 1988) and BLAST (Altschul
et al., 1997) around 1990, a new generation of faster methods to
find DNA sequence matches was developed since 2000, including
MegaBLAST (Morgulis et al., 2008; Zhang et al., 2000), SSAHA2
(Ning et al., 2001), BLAT (Kent, 2002) and PatternHunter (Ma
et al., 2002), greatly speeding up matching capillary sequencing
reads against a large reference genome. When new sequencing
technologies arrived that generated millions of short (<100 bp) reads,
a variety of new algorithms were developed which were 10–1000
times faster, including SOAP (Li,R. et al., 2008), MAQ (Li,H. et al.,
2008), Bowtie (Langmead et al., 2009) and BWA (Li and Durbin,
2009). However, Roche/454 sequencing technology has already
produced reads >400 bp in production, Illumina gradually increases
read length >100 bp, and Pacific Bioscience generates 1000 bp reads
in early testing (Eid et al., 2009). Reads coming from the new
sequencing technologies are not short any more, which effectively
rules out many of the new aligners exclusively designed for reads

∗To whom correspondence should be addressed.

no longer than 100 bp. Efficiently aligning long reads against a long
reference sequence like the human genome poses a new challenge
to the development of alignment tools.

Long-read alignment has different objectives from short-read
alignment. First, in short-read alignment, we would usually like to
align the full-length read to reduce the reference bias caused by the
mismatches toward the ends of the read. Given this requirement,
we can design spaced seed templates (Ma et al., 2002) spanning
the entire read (Jiang and Wong, 2008; Lin et al., 2008; Smith
et al., 2008), or quickly filter out poor matches, for example, by
applying q-gram filtration (Rumble et al., 2009; Weese et al., 2009)
or by bounding the search process (Li and Durbin, 2009), and
thus accelerate the alignment. In long-read alignment, however, we
would prefer to find local matches because a long read is more
fragile to structural variations and misassemblies in the reference
but is less affected by the mismatches close to the ends of a read.
Secondly, many short-read aligners are only efficient when doing
ungapped alignment or allowing limited gaps, e.g. a maximum of
one gap. They cannot find more gaps or the performance quickly
degrades when they are tuned for this task. Long-read aligners,
however, must be permissive about alignment gaps because indels
occur more frequently in long reads and may be the dominant source
of sequencing errors for some technologies such as 454 and Pacific
Bioscience.

When considering algorithms to speed-up long-read alignment,
hash table indexing as is used in most current software is not the only
choice. Meek et al. (2003) found a Smith–Waterman-like dynamic
programming that can be applied between a query sequence and the
suffix tree of the reference, effectively aligning the query against
each subsequence sampled from the suffix tree via a top-down
traversal. As on a suffix tree identical sequences are collapsed on
a single path, time is saved by avoiding repeated alignment of
identical subsequences. Lam et al. (2008) furthered this idea by
implicitly representing the suffix tree with an FM-index (Ferragina
and Manzini, 2000), which is based on the Burrows–Wheeler
Transform (BWT; Burrows and Wheeler, 1994), to achieve a small
memory footprint. Their new algorithm, BWT-SW, is able to deliver
identical results to the standard Smith–Waterman alignment, but
thousands of times faster when aligning against the human genome
sequence. While BWT-SW is still slower than BLAST on long query
sequences, it finds all matches without heuristics. One can imagine
that introducing heuristics would further accelerate BWT-SW. Our
BWA-SW algorithm follows this route.

To some extent, BWA-SW, as well as BWT-SW, also follows the
seed-and-extend paradigm. But different from BLAT and SSAHA2,

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at N
ew

 Y
ork U

niverstiy L
aw

 School L
ibrary on O

ctober 28, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 at N

ew
 Y

ork U
niverstiy L

aw
 School L

ibrary on O
ctober 28, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

 at N
ew

 Y
ork U

niverstiy L
aw

 School L
ibrary on O

ctober 28, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 at N

ew
 Y

ork U
niverstiy L

aw
 School L

ibrary on O
ctober 28, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

 at N
ew

 Y
ork U

niverstiy L
aw

 School L
ibrary on O

ctober 28, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 at N

ew
 Y

ork U
niverstiy L

aw
 School L

ibrary on O
ctober 28, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

 at N
ew

 Y
ork U

niverstiy L
aw

 School L
ibrary on O

ctober 28, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bio-bwa.sourceforge.net
http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 590 589–595

H.Li and R.Durbin

BWA-SW finds seeds by dynamic programming between two FM-
indices and allows mismatches and gaps in the seeds. It extends a
seed when the seed has few occurrences in the reference sequence.
Speed is gained by reducing unnecessary extension for highly
repetitive sequences.

In this article, we will describe this new alignment algorithm,
BWA-SW, for long-read alignments and evaluate its practical
performance along with BLAT and SSAHA2 on both simulated and
real data. We will also give a brief introduction to suffix array and
FM-index, but readers are referred to Li and Durbin (2009) for more
details.

2 METHODS

2.1 Overview of the BWA-SW algorithm
BWA-SW builds FM-indices for both the reference and query sequence. It
implicitly represents the reference sequence in a prefix trie and represents
the query sequence in a prefix directed acyclic word graph (prefix DAWG;
Blumer et al., 1985), which is transformed from the prefix trie of the query
sequence (Section 2.3). A dynamic programming can be applied between
the trie and the DAWG, by traversing the reference prefix trie and the
query DAWG, respectively. This dynamic programming would find all local
matches if no heuristics were applied, but would be no faster than BWT-
SW. In BWA-SW, we apply two heuristic rules to greatly accelerate this
process. First, traversal on the query DAWG is carried in the outer loop,
and therefore without finishing the dynamic programming, we know all the
nodes in the reference prefix trie that match the query node with a positive
score. Based on the observation that the true alignment tends to have a
high alignment score, we can prune low-scoring matches at each node to
restrict the dynamic programming around good matches only. The scale of
dynamic programming can thus be dramatically reduced. It is possible for
the true alignment to be pruned in this process, but in practice, this can be
controlled by the use of heuristics and happens rarely, given long or high-
quality query sequences. Secondly, BWA-SW only reports alignments largely
non-overlapping on the query sequence instead of giving all the significant
local alignments. It heuristically identifies and discards seeds contained in
a longer alignment and thus saves computing time on unsuccessful seed
extensions.

2.2 Notations and definitions
2.2.1 Suffix array and BWT Let �={A,C,G,T} be the alphabet of
nucleotides and $ be a symbol that is lexicographically smaller than all
the symbols in �. Given a nucleotide sequence X =a1 ...an−1 with an−1 =$,
let X[i]=ai be the i-th symbol, X[i, j]=ai ...aj a subsequence of X and
Xi =X[i,n−1] a suffix of X. The suffix array S of X is a permutation
of integers 0,...,n−1 such that S(i)= j if and only if Xj is the i-th
lexicographically smallest suffix. The BWT of X is a permutation of X ,
where B[i]=$ if S(i)=0 and B[i]=X[S(i)−1] otherwise.

2.2.2 Suffix array interval Given a sequence W , the suffix array interval
or SA interval [R(W),R(W)] of W is defined as

R(W) = min{k: W is the prefix of XS(k)}
R(W) = max{k: W is the prefix of XS(k)}

In particular, if W is an empty string, R(W)=1 and R(W)=n−1. The set of
the positions of all the occurrences of W is {S(k) :R(W)≤k ≤R(W)}.

Let C(a)=#{0≤ j≤n−2 :X[j]<a} and O(a,i)=#{0≤ j≤ i :B[j]<a},
where #{·} calculates the cardinality (or size) of a set. Ferragina and Manzini
(2000) proved that

R(aW) = C(a)+O(a,R(W)−1)+1

R(aW) = C(a)+O(a,R(W))

and that R(aW)≤R(aW) if and only if aW is a substring of X.

2.2.3 FM-index The suffix array S, array C and O suffice for the exact
search of a pattern in X . FM-index (Ferragina and Manzini, 2000) is a
compressed representation of the three arrays, consisting of the compressed
BWT string B, auxiliary arrays for calculating O, and part of the suffix array
S. BWA-SW, however, uses a simplified FM-index where we do not compress
B and store part of the occurrence array O without auxiliary data structures.
The simplified version is more efficient for DNA sequences with a very small
alphabet. Details on the construction are presented in our previous paper (Li
and Durbin, 2009).

2.2.4 Alignment An alignment is a tuple (W1,W2,A) where W1 and W2 are
two strings and A is a series of copying, substitution, insertion and deletion
operations which transform W2 into W1. Insertions and deletions are gaps.
Gaps and substitutions are differences. The edit distance of the alignment
equals the total number of differences in A.

A score can be calculated for an alignment given a scoring system. We
say W1 matches W2 if W1 and W2 can be aligned with a positive score, and
in this case, we also say (W1,W2) is a match.

A match (W1,W2) is said to be contained in (W ′
1,W

′
2) on the first

sequence if W1 is a substring of W ′
1. Similarly, we can define the ‘contained’

relationship between alignments (a stronger condition) and between an
alignment and a match.

2.3 Prefix trie and prefix DAWG
The prefix trie of string X is a tree with each edge labeled with a symbol
such that the concatenation of symbols on the path from a leaf to the root
gives a unique prefix of X . The concatenation of edge symbols from a node
to the root is always a substring of X , called the string represented by the
node. The SA interval of a node is defined as the SA interval of the string
represented by the node. Different nodes may have an identical interval, but
recalling the definition of SA interval, we know that the strings represented
by these nodes must be the prefixes of the same string and have different
lengths.

The prefix DAWG, of X is transformed from the prefix trie by collapsing
nodes having an identical interval. Thus in the prefix DAWG, nodes and SA
intervals have an one-to-one relationship, and a node may represent multiple
substrings of X , falling in a sequence where each is a prefix of the next as is
discussed in the previous paragraph. Figure 1 gives an example.

2.4 Aligning prefix trie against prefix DAWG
We construct a prefix DAWG G(W) for the query sequence W and a prefix
trie T (X) for the reference X . The dynamic programming for calculating the
best score between W and X is as follows. Let Guv = Iuv =Duv =0 when u is
the root of G(W) and v the root of T (X). At a node u in G(W), for each of
its parent node u′, calculate

Iuv|u′ = max{Iu′v,Gu′v −q}−r

Duv|u′ = max{Duv′ ,Guv′ −q}−r

Guv|u′ = max{Gu′v′ +S(u′,u;v′,v),Iu′v′ ,Du′v′ ,0}
where v′ is the parent of v in T (X), function S(u′,u;v′,v) gives the score
between the symbol on the edge (u′,u) and the one on (v′,v), and q and r
are gap open and gap extension penalties, respectively. Guv, Iuv and Duv are
calculated with:

u∗ =argmax
u′∈pre(u)

Guv|u′

(Guv,Iuv,Duv)=
{

(Guv|u∗ ,Iuv|u∗ ,Duv|u∗) Guv|u∗ >0
(−∞,−∞,−∞) otherwise

590

[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 591 589–595

Alignment with BWA-SW

Fig. 1. Prefix trie and prefix DAWG of string ‘GOOGOL’. (A) Prefix trie.
Symbol ‘∧’ marks the start of a string. The two numbers in a node gives the
SA interval of the node. (B) Prefix DAWG constructed by collapsing nodes
with the identical SA interval. For example, in the prefix trie, three nodes
has SA interval [4,4]. Their parents have interval [1,2], [1,2] and [1,1],
respectively. In the prefix DAWG, the [4,4] node thus has parents [1,2] and
[1,1]. Node [4,4] represents three strings ‘OG’, ‘OGO’ and ‘OGOL’ with the
first two strings being the prefix of ‘OGOL’. (A) is modified from Figure 1
in Li and Durbin (2009).

where pre(u) is the set of parent nodes of u. Guv equals the best score between
the (possibly multiple) substrings represented by u and the (one) substring
represented by v. We say a node v matches u if Guv >0.

The dynamic programming is performed by traversing both G(W) and
T (X) in the reverse post-order (i.e. all parent nodes are visited before
children) in a nested way. Noting that once u does not match v, u does not
match any nodes descending from v, we only need to visit the nodes close
to the root of T (X) without traversing the entire trie, which greatly reduces
the number of iterations in comparison to the standard Smith–Waterman
algorithm that always goes through the entire reference sequence.

2.5 Acceleration by the standard Smith–Waterman
In comparison to the standard Smith–Waterman alignment whose time
complexity is O(|X|·|W |), BWA-SW has better time complexity since it
is no slower than BWT-SW whose time complexity O(|X|0.628|W |) (Lam
et al., 2008). This conclusion comes because for short sub-alignments we
are considering multiple possible matches with a single uv comparison.
However, the constant associated with each iteration is much larger due
to the complex steps related to the traversal of prefix trie and prefix DAWG,
which makes BWA-SW inefficient when we use BWA-SW to extend a unique
alignment. A more efficient strategy would be to use BWA-SW to find partial
matches and apply the Smith–Waterman algorithm to extend. In dynamic
programming, we know the number of partial matches being considered at
any pair because this can be calculated from the size of the SA interval.
When Guv is good enough and the SA interval size of v is below a certain
threshold (3 by default), we save the (u,v) pair, called a seed interval pair,
and do not go deeper from the v node in T (X). By looking up the suffix array
of X and W , we can derive seed matches, or simply seeds, from seed interval
pairs. These seeds are then extended by the Smith–Waterman algorithm later.
If the entire query is a highly repetitive sequence, it will be aligned purely
with the algorithm described in the last section without the Smith–Waterman
extension.

Because we are stopping the dynamic programming early to generate
seeds, the global best alignment may contain multiple seeds and in practice
this will tend to be the case for long alignments. Typically for 1 kb alignments
there will be 10–20 seeds. Below we will take advantage of this observation
to heuristically speed up the search.

BWT-SW deploys a similar strategy in performing the dynamic
programming between a sequence and a prefix trie to find seed matches
followed by Smith–Waterman extension. The main difference from our
algorithm is that BWT-SW initiates the Smith–Waterman alignment once
the score is high enough, regardless of the SA interval size. Sometimes a
repetitive sequence may match to thousands of places in the human genome
and extending partial matches each time may be slow.

2.6 Heuristic accelerations
2.6.1 Z-best strategy The algorithm described so far is exact in that
it is able to deliver the same results as the Smith–Waterman algorithm.
Although it is much faster than the standard algorithm given a long reference
sequence, it is not fast enough for aligning large-scale sequencing data.
Closer investigation reveals that even for a unique 500 bp query sequence, a
few million nodes in T (X) may match the query with a positive alignment
score. The majority of these nodes are random matches or matches in short
low-complexity regions. Visiting all of them is wasteful.

To accelerate alignment, we traverse G(W) in the outer loop and T (X)
in the inner loop, and at each node u in G(W) we only keep the top Z
best scoring nodes in T (X) that match u, rather than keep all the matching
nodes. This heuristic strategy is called Z-best. Of course, when we apply the
Z-best strategy, we could miss a seed contained in the true alignment when
a false match has a higher score. But if the query is nearly identical to the
reference, this happens less often. In addition, if the true alignment is long
and contains many seeds, the chance of all seeds being false is very small.
On both simulated and real data (Section 3), we find even Z =1 works well
with high-quality 200 bp reads (<5% sequencing error rate). Increasing Z
to 10 or higher marginally improves the accuracy but greatly reduces the
alignment speed.

To reduce alignment errors, we also align the reverse query sequence
to the reverse reference sequence, namely reverse–reverse alignment, in
addition to the forward–forward alignment. Ideally, the forward–forward
and the reverse–reverse alignments should yield identical outcomes, but
if a seed in the true alignment has a low-scoring suffix (or prefix), the
forward–forward (or reverse–reverse) alignment is likely to miss it, while
combining the two rounds of alignment reduces the chance. Moreover, if
the best alignment from the forward–forward alignment contains many seed
matches, the chance of it being false is also small. In implementation, we do
not apply the reverse–reverse alignment if the best alignment contains, by
default, 5 or more seeds.

2.6.2 Filtering seeds before the Smith–Waterman extension Like BLAST,
both BLAT and SSAHA2 report all significant alignments or typically tens
of top-scoring alignments, but this is not the most desired output in read
mapping. We are typically more interested in the best alignment or best
few alignments, covering each region of the query sequence. For example,
suppose a 1000 bp query sequence consists of a 900 bp segment from one
chromosome and a 100 bp segment from another chromosome; 400 bp out
of the 900 bp segment is a highly repetitive sequence. For BLAST, to know
this is a chimeric read we would need to ask it to report all the alignments
of the 400 bp repeat, which is costly and wasteful because in general we
are not interested in alignments of short repetitive sequences contained in a
longer unique sequence. On this example, a useful output would be to report
one alignment each for the 900 bp and the 100 bp segment, and to indicate if
the two segments have good suboptimal alignments that may render the best
alignment unreliable. Such output simplifies downstream analyses and saves
time on reconstructing the detailed alignments of the repetitive sequence.

In BWA-SW, we say two alignments are distinct if the length of the
overlapping region on the query is less than half of the length of the shorter
query segment. We aim to find a set of distinct alignments which maximizes
the sum of scores of each alignment in the set. This problem can be solved by
dynamic programming, but as in our case a read is usually aligned entirely,
a greedy approximation would work well. In the practical implementation,
we sort the local alignments based on their alignment scores, scan the sorted

591

[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 592 589–595

H.Li and R.Durbin

list from the best one and keep an alignment if it is distinct from all the kept
alignments with larger scores; if alignment a2 is rejected because it is not
distinctive from a1, we regard a2 to be a suboptimal alignment to a1 and use
this information to approximate the mapping quality (Section 2.7).

Because we only retain alignments largely non-overlapping on the query
sequence, we might as well discard seeds that do not contribute to the final
alignments. Detecting such seeds can be done with another heuristic before
the Smith–Waterman extension and time spent on unnecessary extension can
thus be saved. To identify these seeds, we chain seeds that are contained in
a band (default band width 50 bp). If on the query sequence a short chain is
fully contained in a long chain and the number of seeds in the short chain is
below one-tenth of the number of seeds in the long chain, we discard all the
seeds in the short chain, based on the observation that the short chain can
rarely lead to a better alignment than the long chain in this case. Unlike the
Z-best strategy, this heuristic does not have a noticeable effect on alignment
accuracy. On 1000 10 kb simulated data, it halves the running time with no
reduction in accuracy.

2.7 Approximating mapping quality
Li,H. et al. (2008) introduced the concept of mapping quality to estimate
the probability of a query sequence being placed at a wrong position. If
an alignment algorithm guarantees to find all local alignments, mapping
quality is determined by these local alignments only. However, as BWA-
SW deploys heuristic rules, the chance of producing a wrong alignment
is also related to the heuristics. To estimate the mapping quality of a
BWA-SW alignment, we fit an empirical formula: 250 ·c1 ·c2 ·(S1 −S2)/S1,
where S1 is the score of the best alignment, S2 the score of the second
best alignment, c1 equals 1 if the alignment covers more than four
seeds or 0.5 otherwise, and c2 equals to 1 if the best alignment is
found by both forward–forward and reverse–reverse alignments or 0.2
otherwise.

3 RESULTS

3.1 Implementation
The BWA-SW algorithm is implemented as a component of the
BWA program (Li and Durbin, 2009), which is distributed under
the GNU general public license (GPL). The implementation takes a
BWA index and a query FASTA or FASTQ file as input and outputs

the alignment in the SAM format (Li et al., 2009). The query file
typically contain many sequences (reads). We process each query
sequence in turn, using multiple threads if applicable. Memory
usage is dominated by the FM-index, about 3.7 GB for the human
genome. Memory required for each query is roughly proportional to
the sequence length. On typical sequencing reads, the total memory
is <4 GB; on one query sequence with 1 million base pairs (Mbp),
the peak memory is 6.4 GB in total.

In the implementation, we try to automatically adjust parameters
based on the read lengths and sequencing error rates to make the
default settings work well for inputs of different characteristics.
This behavior is convenient to users who are not familiar with the
algorithm and helps performance given the reads of mixed lengths
and error rates.

3.2 Evaluation on simulated data
On simulated data, we know the correct chromosomal coordinates
from the alignment and the evaluation is straightforward.

3.2.1 Overall performance Table 1 shows the CPU time, fraction
of confidently aligned reads and alignment error rates for BLAT
(v34), BWA-SW (version 0.5.3) and SSAHA2 (version 2.4) given
different read lengths and error rates. Unless necessary, we tried to
use the default command-line options of each aligner. Fine tuning
the options based on the characteristics of the input data may yield
better performance.

From Table 1, we can see that BWA-SW is clearly the fastest,
several times faster than BLAT and SSAHA2 on all inputs, and its
speed is not sensitive to the read length or error rates. The accuracy
of BWA-SW is comparable with SSAHA2 when the query is long
or has low error rate. Given short and error-prone reads, SSAHA2
is more accurate, although it has to spend more time on aligning
such reads. SSAHA2 is not tested on the 10 kb reads because it
is not designed for this task initially and thus does not perform
well. BLAT with the -fastMap option is faster than SSAHA2, but
less accurate. Under the default option, BLAT is several to tens of
times slower than SSAHA2. The accuracy is higher in comparison to

Table 1. Evaluation on simulated data

Program Metrics 100 bp 200 bp 500 bp 1000 bp 10 000 bp

2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10%

BLAT CPU sec 685 577 559 819 538 486 1078 699 512 1315 862 599 2628 1742 710
Q20% 68.7 25.5 3.0 92.0 52.9 7.8 97.1 86.3 21.4 97.7 96.4 39.0 98.4 99.0 94.0
errAln% 0.99 2.48 5.47 0.55 1.72 4.55 0.17 1.12 4.41 0.01 0.52 3.98 0.00 0.00 1.28

BWA-SW CPU sec 165 125 84 222 168 118 249 172 152 234 168 150 158 134 120
Q20% 85.1 62.2 19.8 93.8 88.7 49.7 96.1 95.5 85.1 96.9 96.5 95.0 98.4 98.5 98.1
errAln% 0.01 0.05 0.17 0.00 0.02 0.13 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

SSAHA2 CPU sec 4872 7962 9345 1932 2236 5252 3311 8213 6863 1554 1583 3113 – – –
Q20% 85.5 83.8 78.2 93.4 93.1 91.9 96.6 96.5 96.1 97.7 97.6 97.4 – – –
errAln% 0.00 0.01 0.19 0.01 0.00 0.01 0.00 0.01 0.04 0.00 0.00 0.00 – – –

Approximately 10 000 000 bp data of different read lengths and error rates are simulated from the human genome. Twenty percent of errors are indel errors with the indel length
drawn from a geometric distribution (density: 0.7·0.3l−1). These simulated reads are aligned back to the human genome with BLAT (option -fastMap), BWA-SW and SSAHA2
(option −454 for 100 and 200 bp reads), respectively. The aligned coordinates are then compared with the simulated coordinates to find alignment errors. In each cell in this table,
the three numbers are the CPU seconds on a single-core of an Intel E5420 2.5 GHz CPU, percent alignments with mapping quality greater than or equal to 20 (Q20), and percent
wrong alignments out of Q20 alignments. SSAHA2 and BWA-SW report mapping quality; BLAT mapping quality is estimated as 250 times the difference of the best and second
best alignment scores divided by the best alignment score (essentially the same calculation as the one for BWA-SW).

592

[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 593 589–595

Alignment with BWA-SW

Table 2. Summary of alignments inconsistent between the BWA-SW and SSAHA2 on real data

Condition Count BWA-SW SSAHA2

avgLen avgDiff avgMapQ avgLen avgDiff avgMapQ

BWA-SW≥20; SSAHA2 unmapped 0 – – – – – –
BWA-SW≥20 plausible; SSAHA2<20 1188 398.2 1.3% 178.4 198.3 13.1% 3.9
BWA-SW≥20 questionable 40 183.0 7.8% 41.2 280.3 9.4% 2.4

SSAHA2≥20; BWA-SW unmapped 946 – – – 75.4 6.3% 51.2
SSAHA2≥20 plausible; BWA-SW<20 47 129.0 9.3% 2.5 200.5 8.8% 34.4
SSAHA2≥20 questionable 185 400.2 1.7% 13.4 399.2 2.9% 216.4

A total of 137 670 454 reads uniformly selected from SRR003161 were mapped against the human genome with BWA-SW and SSAHA2, respectively. A read is said to be aligned
inconsistently if the leftmost coordinates of the BWA-SW and SSAHA2 alignment differs by over 355 bp, the average read length. A score, which equals to the number of matches
minus three multiplied by the number of differences (mismatches and gaps) in the aligned region, is calculated for each alignment. A BWA-SW alignment is said to be plausible if
the score derived from the BWA-SW alignment minus the one derived from the SSAHA2 alignment of the same read is greater than or equal to 20 (i.e. the BWA-SW alignment
is sufficiently better); otherwise the BWA-SW alignment is said to be questionable. Plausible and questionable SSAHA2 alignments are defined in a similar manner. In the table,
‘BWA-SW≥20’ denotes the BWA-SW alignments with mapping quality higher than 20. In all, BWA-SW misses 993 (=946+47) alignments which SSAHA2 aligns well, while
SSAHA2 misses 1188; 40 BWA-SW Q20 alignments and 185 SSAHA2 Q20 alignments are possibly wrong.

the -fastMap mode, but still lower than that of BWA-SW in general
(data not shown).

On memory, both BWA-SW and BLAT uses ∼4 GB memory.
SSAHA2 uses 2.4 GB for ≥500 bp reads with the default option, and
5.3 GB for shorter reads with the −454 option which increases the
number of seed sequences stored in the hash table and increases the
memory as a result. In addition, BWA-SW supports multi-threading
and thus may take less memory per CPU core if it is run on a multi-
core computer. SSAHA2 and BLAT do not support multi-threading
at present.

3.2.2 Chimera detection We first study the behavior of each
aligner given a chimeric read. To do so, we fabricated two
chimeric reads with both consisting of one 1000 bp piece from one
chromosomal position and one 300 bp piece from another position.
The main difference between the two reads is that the 1000 bp piece
in the second read has a ∼750 bp repetitive sequence, while the first
read is highly unique. When we align the two chimeric reads to
the human genome, BWA-SW reports four alignments, one for each
piece, as is desired. The latest SSAHA2 fails to find the alignment
of the 300 bp pieces in both reads, although it is able to find the
alignments if we align the 300 bp piece as an individual read. An
older version (1.0.9) is able to align the 300 bp piece in the first read
by default, but for the second read, we need to switch to a more
thorough but much slower configuration that reports all the hits to
the 750 bp repeat. BLAT with -fastMap does not find the alignment
of the 300 bp piece for the second read. On the two examples, only
BWA-SW has sufficient power to detect chimera.

Furthermore, BWA-SW rarely produces high-quality false
chimeric alignments. For example, given the 10 000 1 kb reads with
10% errors but without chimera in simulation, BWA-SW predicts 18
chimeric reads. The mapping quality of the wrongly aligned pieces
on these reads is only 2.4 (maximum 11), implying that BWA-SW is
aware that these chimera are unreliable. As is expected, BWA-SW
produces fewer false chimeric reads given lower base errors.

3.3 Evaluation on real data
Evaluation on real data is complicated by the lack of a ground truth.
However, it is still possible to evaluate the relative accuracy by

comparing the results from two aligners using the principle that the
true alignment tends to have a considerably higher alignment score,
because most errors arise from failing to find a seed.

Suppose we align a read using two aligners A and B and get
different results. If both A and B give low mapping qualities, the
alignment is ambiguous and it does not matter if either alignment
is wrong. If A gives high mapping quality and the A alignment
score is worse than B, A alignment is probably wrong; even if A
alignment score is just a little better than B, A alignment is not
reliable and the high mapping quality given by A is still questionable.
In practice, defining ‘a little better’ alignment score requires to
set a arbitrary threshold on the score difference and therefore this
evaluation method is approximate.

Table 2 gives a summary of 454 reads which are mapped by
only one aligner or mapped to different places, and are assigned
a mapping quality greater or equal to 20 by either BWA-SW
or SSAHA2. We can see that BWA-SW tends to miss short
alignments with high error rates (946 of them), which agrees with
the evaluation on simulated data. SSAHA2 misses alignments for
a different reason. On 1188 reads, SSAHA2 produces obviously
wrong alignments. It is aware that these alignments are wrong by
assigning low mapping quality, but the true alignments are missed
anyway.

For both aligners, most wrong alignments are caused
by overlooking alignments with a similar score to the
best reported alignment. For example, SSAHA2 aligns read
SRR003161.1261578 to X chromosome with mapping quality
244 and BWA-SW aligns it to chromosome 2 with identical
alignment length and edit distance. The existence of two best
scoring alignments means the read cannot be uniquely placed and
a mapping quality as high as 244 is inaccurate. SSAHA2 gives this
high mapping quality probably because it overlooks the match on
chromosome 2. And in this specific example, BWA-SW properly
gives a mapping quality zero, although it may overlook alternative
matches in other examples.

On simulated 100 and 200 bp reads, SSAHA2 with the
−454 option delivers better alignments than BWA-SW. On this
real dataset, BWA-SW is more accurate possibly because the
average read length is relatively long (355 bp). To confirm this

593

[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 594 589–595

H.Li and R.Durbin

speculation, we compared the two aligners on 99 958 reads from run
SRR002644 with average read length 206 bp. This time BWA-SW
misses 1092 SSAHA2 Q20 alignments and produces 39 questionable
alignments; SSAHA2 misses 325 and produces 10 questionable
ones. SSAHA2 is more accurate on this shorter dataset, although
it is nine times slower than BWA-SW and uses 40% more memory.

4 DISCUSSION
BWA-SW is an efficient algorithm for aligning a query sequence of
a few hundred base pairs or more against a long reference genome.
Its sensitivity and specificity tend to be higher given a long query
or a query with low error rate, and on such query sequences, the
accuracy of BWA-SW is comparable with the most accurate aligner
so far. Furthermore, BWA-SW is able to detect chimera, potentially
caused by structural variations or reference misassemblies, which
may pose a challenge to BLAT and SSAHA2.

BWA-SW, BLAT and SSAHA2 all follow the seed-and-extend
paradigm. The major difference comes from the seeding strategy.
BLAT and SSAHA2 identify short exact matches as seeds, typically
of length 11 or 12 bp. For k-mer seeding between two sequences
of length L and l, respectively, the expected number of seeds is
L ·l/4k , or of the order of 105 for alignment against the human
genome. Extending these seeds each with the Smith–Waterman
algorithm is expensive. To reduce unnecessary seed extension,
both BLAT and SSAHA2 use non-overlapping seeds by default
and require multiple seed matches, which should work well for
random sequences, but still involves many seed extensions in highly
repetitive regions. BWA-SW resolves this issue by using a few long
gapped seeds in unique regions. On real biological data, it saves
many unnecessary seed extensions and leads to a better overall
performance. However, to reduce time when identifying long seeds,
BWA-SW only maintains a very small fraction of the dynamic
programming matrix, which may miss all seeds for true matches.
This heuristic is the major source of alignment errors especially for
short queries when there are only few valid unique seeds between
the sequences to be aligned. On long alignments, fortunately, the
chance of missing all seeds is small. We have shown BWA-SW
works equally well as SSAHA2.

BWA-SW differs from BWT-SW in several aspects. First of all,
BWT-SW guarantees to find all local matches, whereas BWA-SW
is a heuristic algorithm which may miss true hits but is much
faster. Secondly, BWA-SW aligns two FM-indices while BWT-SW
aligns one sequence and a FM-index. Building a prefix DAWG for
the query sequences potentially helps to avoid repeatedly aligning
identical substrings in the query, and thus improves the theoretical
time complexity. Thirdly, BWA-SW traverses the reference prefix
trie in the inner loop while BWT-SW loops through the query
sequence in the inner loop. Without heuristics, the BWA-SW
approach would hurt performance because we have to trade speed
for memory in traversing the reference prefix trie, and it would be
more efficient to traverse it in the outer loop. Nonetheless, applying
the Z-best strategy requires to know the top-scoring reference
nodes matching a query substring without finishing the dynamic
programming and thus only works when the reference is traversed
in the inner loop. Fourthly, BWA-SW only reports alignments
largely non-overlapping on the query sequence, while BWT-SW, like
BLAST, reports all statistically significant alignments. BWA-SW
retains key information of alignments and generates much smaller

and more convenient output. For BWT-SW, end users usually need to
post-process the results to filter out many alignments of little interest
to them. In all, BWA-SW is tuned toward practical usefulness given
large-scale real data.

The high speed of BWA-SW largely comes from two strategies:
the use of FM-indices and the suppression of short repetitive
matches contained in a better match. While the first strategy is
not applicable to hash table-based algorithms such as SSAHA2 and
BLAT, the second strategy could be implemented in such programs
and may substantially accelerate them by saving much time on the
construction of repetitive alignments. And although the use of BWT
reduces unnecessary alignments in repeats, each BWT operation
comes with a large constant in comparison with a hash table look
up. It is still possible that hash table-based algorithms could be faster
than BWA-SW if they incorporated some of these features.

ACKNOWLEDGEMENTS
We are grateful to Zemin Ning for his helpful comments on the
SSAHA2 algorithm, and to Kimmo Palin for providing the literature
on DAWG.

Funding: Wellcome Trust 077192/Z/05/Z.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Blumer,A. et al. (1985) The smallest automaton recognizing the subwords of a text.

Theor. Comput. Sci., 40, 31–55.
Burrows,M. and Wheeler,D.J. (1994) A block-sorting lossless data compression

algorithm. Technical report 124, Digital Equipment Corporation, Palo Alto, CA.
Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase molecules.

Science, 323, 133–138.
Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with applications. In

Proceedings of the 41st Symposium on Foundations of Computer Science (FOCS
2000), Redondo Beach, CA, USA, pp. 390–398.

Jiang,H. and Wong,W.H. (2008) SeqMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics, 24, 2395–2396.

Kent,W.J. (2002) BLAT–the BLAST-like alignment tool. Genome Res., 12, 656–664.
Lam,T.W. et al. (2008) Compressed indexing and local alignment of DNA.

Bioinformatics, 24, 791–797.
Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol., 10, R25.
Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25, 1754–1760.
Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using

mapping quality scores. Genome Res., 18, 1851–1858.
Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics,

25, 2078–2079.
Li,R. et al. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24,

713–714.
Lin,H. et al. (2008) Zoom! zillions of oligos mapped. Bioinformatics, 24, 2431–2437.
Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.
Meek,C. et al. (2003) OASIS: an online and accurate technique for local-alignment

searches on biological sequences. In Proceedings of 29th International Conference
on Very Large Data Bases (VLDB 2003), Berlin, Germany, pp. 910–921.

Morgulis,A. et al. (2008) Database indexing for production megablast searches.
Bioinformatics, 24, 1757–1764.

Ning,Z. et al. (2001) SSAHA: a fast search method for large DNA databases. Genome
Res., 11, 1725–1729.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence
comparison. Proc. Natl Acad. Sci. USA, 85, 2444–2448.

594

[16:59 8/2/2010 Bioinformatics-btp698.tex] Page: 595 589–595

Alignment with BWA-SW

Rumble,S.M. et al. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS
Comput. Biol., 5, e1000386.

Smith,A.D. et al. (2008) Using quality scores and longer reads improves accuracy of
Solexa read mapping. BMC Bioinformatics, 9, 128.

Weese,D. et al. (2009) RazerS–fast read mapping with sensitivity control. Genome Res.,
19, 1646–1654.

Zhang,Z. et al. (2000) A greedy algorithm for aligning DNA sequences. J. Comput.
Biol., 7, 203–214.

595

