
BLAST with BioPython

You can use Python to make BLAST searches over the web using the NBCBI server, or a use a BLAST
program installed on your own computer (or the CHIBI HPC server). Local BLAST allows you to search a
custom database, or use a very large query. Many of the steps to set up BLAST require some Unix
command line typing, but BioPython is very useful to parse large results files.

1) BioPython has a nice tool (NCBIWWW) to make BLAST queries over the web on the NCBI BLAST
service. Of course, you can only search against NCBI databases.

from Bio import SeqIO
from Bio.Blast import NCBIWWW
my_query = SeqIO.read("test.fasta", format="fasta")
result_handle = NCBIWWW.qblast("blastn", "nt", my_query.seq)
blast_result = open("my_blast.xml", "w")

blast_result.write(result_handle.read())
blast_result.close()
result_handle.close()

 This creates a file on your computer (in the current directory used by Python) called
"my_blast.xml". XML is the most computer friendly format for BLAST output, especially if you will be
using BioPython to parse the result. Give this code a try – you can use any single sequence on your
computer (in FASTA format) as the "test.fasta" query.

2) Or you can run a local copy of BLAST on your own computer. This allows you to create custom

local databases and run unlimited queries (limited only by your compute power)

Install BLAST+ from NCBI on your computer
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

3) For this exercise, we will use as query, a set of transcripts from de novo assembly of RNA-seq
data from an insecticide resistant housefly (Musa domestica):
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA170716
http://www.ncbi.nlm.nih.gov/sites/nuccore?term=170716[BioProject]

4) You also need a set of protein sequences (in FASTA format) that will be your database. For this
exercise, we will use the known UniProt proteins from Drosophila melanogaster (the most well
studied insect genome). Data file: Dmel-UniP.fasta

5) Build a BLAST database with makeblastdb
If you just type this command, it gives you a minimal set of "usage" information that should
enable you to craft an appropriate command.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA170716

6) Create a blastx query (to compare translated RNA to protein database). Set the e-value cutoff at

1e-20 and choose the XML output format. It is often useful to limit the output to the best BLAST
match for each query sequence, so you can include the following parameters: -
num_descriptions 1 -num_alignments 1

blastx –query Musa_tx.fasta –db drospep -evalue 1e-20 –outfmt 5

7) This same query can be run using a Python function NcbiblastxCommandline in the module
Bio.Blast.Applications. Tthis does not save you any effort vs the Blast command line unless you
want to create a large number of queries.

from Bio.Blast.Applications import NcbiblastxCommandline
 blastx_cline = NcbiblastxCommandline(query="Musa_tx.fasta", db="drospep", \
 evalue=1e-20, outfmt=5, out="my_blast.xml")
 stdout, stderr = blastx_cline()

8) From any BLAST search you get a BLAST output – remember to save it in XML format. Then use
the Python Bio.BLAST. NCBIXML module to parse the result. The output contains one "record"
for each query sequence. A BLAST record is a complex object which contains many alignments
(matches), each of which contains multiple regions (hsps). The hsps have the e-value, query
name, and subject (match target) names.

For the test search (Musa_tx.fasta vs. Drosophila proteins), for matches with e-value better than
1e-20 (for any hsp segment), print the name of the query, the name of the matching protein,
and the e-value. You can play with the output format to get whatever elements of the BLAST
result you want to use to summarize the search.

from Bio.Blast import NCBIXML
E_VALUE_THRESH = 1e-20

for record in NCBIXML.parse(open("my_blast.xml")):
 if record.alignments : #skip queries with no matches
 print "QUERY: %s" % record.query[:60]

 for align in record.alignments:
 for hsp in align.hsps:
 if hsp.expect < E_VALUE_THRESH:
 print "MATCH: %s " % align.title[:60]
 print hsp.expect

To hand in for this assignment, for the first 10 query sequences with matches above the e-value
threshold, send the ID and name of the query sequence, the ID and name of the matching database
sequence, and the e-value of the first HSP in the match. Send to: assignments@FenyoLab.org

