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Abstract

In the life sciences, a new paradigm is emerging that places networks
of interacting molecules between genotype and phenotype. These
networks are dynamically modulated by a multitude of factors, and the
properties emerging from the network as a whole determine observable
phenotypes. This paradigm is usually referred to as systems biology,
network biology, or integrative biology. Mass spectrometry (MS)–based
proteomics is a central life science technology that has realized great
progress toward the identification, quantification, and characterization
of the proteins that constitute a proteome. Here, we review how
MS-based proteomics has been applied to network biology to identify
the nodes and edges of biological networks, to detect and quantify
perturbation-induced network changes, and to correlate dynamic net-
work rewiring with the cellular phenotype. We discuss future directions
for MS-based proteomics within the network biology paradigm.
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RNAi: small RNA
molecules that
interfere with
messenger RNA and
thus prevent the
translation of a protein
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MOLECULES TO NETWORKS

Much of life science research has been focused
on understanding the complex relationship
between genotype and phenotype. Specifically,
research has addressed the fundamental ques-
tions of how, when, and where the information
encoded in the genome of an organism is
expressed and modulated by external (e.g.,
environmental) or internal (e.g., genomic)
factors to generate a specific phenotype.

Over the past decades, such studies have
been carried out within the “one gene-one
protein-one function” paradigm referred to as

the “molecular biology paradigm,” which arose
from the classical work of Beadle & Tatum (1)
on amino acid metabolism in Neurospora. This
paradigm makes two important assumptions
that have dominated the thinking of genera-
tions of experimental biologists and guided the
development of the techniques of molecular
biology. First, it postulates a direct link be-
tween gene and protein function, implying that
knowledge of all the genes and their translation
products can explain biological function.
Second, it orders individual proteins and
their associated functions in linear pathways,
implying that every function “downstream”
is affected by an upstream block, whereas
every function “upstream” is unaffected by
a downstream block (Figure 1a, left). In the
genomic age, powerful technologies have been
developed to support research at a global
scale within the molecular biology paradigm.
These include genome sequencing to identify
all protein-coding genes of a genome (2, 3);
proteomic methods to identify and quantify
the proteins in a biological sample (4); genomic
engineering (5); and gene knockout, RNAi
technologies, and small-molecule inhibitor
screens to inhibit or manipulate specific func-
tions and to identify upstream and downstream
events (6). Genome-wide RNAi screens that
essentially search the whole genome space
have been particularly popular. They are often
applied to link genes to phenotypic readouts
on a global level (for example, References 7–9).
Overall, the technologies to identify, quantify,
mutate, and interfere with the expression levels
of any conceivable gene or protein of a species
have reached a very high level of maturity.

In spite of these impressive technical
advances and their wide and successful appli-
cation, it has generally remained challenging
to establish genotype-phenotype links. For
example, with the exception of relatively few
single gene defects with high penetrance, the
molecular basis of most disease phenotypes
turned out to be more complex and remain to
be determined (10, 11). The reasons for these
difficulties are likely conceptual rather than
merely technical. The molecule-centric, single
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MS: mass
spectrometry

Posttranslational
modifications
(PTMs): the
enzymatic covalent
addition of a molecular
entity to a protein, or
removal of a molecular
entity, or the
irreversible change in
protein sequence

Liquid
chromatography:
physical separation of
analytes by the
differential partition of
each analyte between a
mobile and a stationary
phase in a column

directional pathway-based paradigm, focusing
on the properties of molecules, has turned
out to be limited because it has neglected
contextual relationships, such as cross talk
between linear pathways that were considered
to operate in isolation of one another.

Recently, a new paradigm has been emerg-
ing, typically referred to as systems biology,
network biology, or integrated biology, that
takes into account contextual relationships
(12–15). In this network view, each node repre-
sents a molecule of interest, such as a gene, any
of its products, or smaller molecules, such as
cofactors, messenger molecules, and metabo-
lites. The edge between two nodes represents a
relationship, such as a physical interaction, an
enzymatic reaction, or a functional connection.
Although the molecule-centric paradigm is
concerned with the network nodes, the new
paradigm is concerned with the network nodes
and edges, placing networks of interacting
molecules between genotype and phenotype
(Figure 1a, right). It assumes that the structure
and topology of such networks are an expres-
sion of the genomic information, that the
networks are dynamically modulated at differ-
ent timescales by external (e.g., environmental
factors) or internal (e.g., genomic alterations)
perturbations, and that the properties of the
entire network determine the phenotype.

The network biology paradigm has several
important implications. First, it requires a dif-
ferent, more integrative view of biological pro-
cesses, as the contextual relationships between
molecules move to the forefront. Second, net-
work biology provides new opportunities for
and critically depends on new experimental and
computational approaches, including methods
to visualize networks, methods to infer net-
work topology and structure, and methods to
simulate and model the dynamic behavior of
networks and their phenotypic consequences.
Thus, network biology has been stirring novel
technologies that focus on the measurement
of contextual relationships of molecules, rather
than on simply enumerating molecules in a
catalog format. In this review, we discuss the
current state of mass spectrometry (MS)–based

proteomic approaches that support network
biology.

MASS SPECTROMETRY–BASED
PROTEOMICS

The main goal of proteomics is the detailed
characterization of the proteome. In the molec-
ular biology paradigm, the focus has been on
the comprehensive identification and charac-
terization of protein sequences, including their
posttranslational modifications (PTMs), and on
the comprehensive quantification of the protein
components of a biological sample.

Most proteomic studies rely on tandem
mass spectrometry as the core technology,
specifically on a method referred to as bottom-
up proteomics. In bottom-up proteomics,
protein samples extracted from cells or tissues
are digested into peptides. Peptides in the
sample are then separated, typically by liquid
chromatography, ionized, and transferred into
the mass spectrometer, where peptide fragment
ion spectra are recorded. Fragment ion spectra
are the currency of information in bottom-up
proteomics, as they can be assigned to peptide
sequences from which the corresponding pro-
teins are inferred. Fragment ion spectra are also
used to detect modified amino acid residues
and to identify and locate modifications within
the peptide sequence. Peptide ion signals can
also be used to infer the quantity of a sample
peptide or protein (16, 17). For every step of the
process, including sample preparation and frac-
tionation, MS data acquisition, quantification,
and data analysis, multiple methods and tools
have been developed and reviewed extensively
(4, 16–19). This also applies to the MS instru-
mentation, which enjoys a continued increase
in performance in regard to mass accuracy,
sensitivity, and analytical robustness (16, 17).

From an extensive menu of available options
for each procedure step, individual choices have
been combined into different workflows and
MS strategies, each addressing different types
of biological inquiries (16, 17, 19). These can
be applied to various samples, such as whole
proteomes, or enriched fractions, such as
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Stable isotope
labeling: a technique
in which samples are
metabolically or
enzymatically labeled
with stable isotopes of
different masses

phosphoproteomes. The most frequently used
strategy is referred to as shotgun or discovery
proteomics. There, precursor ions are detected
in a survey scan and selected automatically us-
ing a simple heuristic via a process referred to as
data-dependent analysis. This strategy results
in datasets that can identify vast numbers of
proteins and enables quantitative comparison
between samples, either with stable isotope
labeling or without labeling, in an approach
known as label-free quantification (4, 20–22).
Shotgun proteomics does not require any prior
knowledge of the composition of the sample,
and thus each protein in every sample analyzed
is newly discovered. In directed proteomics,
precursors are only selected for fragmentation
if they are detectable in a survey scan and
present on a list of predetermined precursor
ions, i.e., an “inclusion list” (23, 24). This
strategy results in datasets that identify and
quantify specific, predetermined segments of a
proteome at a higher level of reproducibility,
compared to discovery proteomics. In targeted
proteomics, only predetermined peptides are
selected for detection and quantification in a
sample. The main mass spectrometric method
supporting targeted proteomics is selected
reaction monitoring (SRM) also referred to
as multiple reaction monitoring (25, 26). In

SRM, specific mass spectrometric assays are
generated a priori for each targeted peptide,
and these assays are then used to selectively
detect and quantify analytes in multiple bio-
logical samples (27). This method can generate
highly reproducible and accurate datasets of
a small, preselected fraction of a proteome
(typically one to a few hundred peptides) at
a wide dynamic range (17, 28). Finally, with
recent advances in instrumentation, a fourth
strategy referred to as data-independent analy-
sis (29–32) is emerging in which no selection of
precursor ions occurs, i.e., the fragmentation
of all precursors is attempted for each sample,
the analysis of which can benefit from the
availability of extensive spectral libraries
(27, 33). Each of these strategies captures a
different subset of the “total proteome space”
(Figure 1b), balancing trade-offs in compre-
hensiveness, reproducibility and selectivity,
sensitivity, accuracy, and dynamic range
(17, 34).

Proteomic studies in the molecular biology
paradigm have, for the most part, strived to
increase coverage of the discovered, character-
ized, and quantified proteome (34). This has
been technically challenging to accomplish,
but it is conceptually simple and largely achiev-
able using the discovery proteomics strategy.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
(a) Within the one gene-one protein-one function paradigm, referred to as the molecular biology paradigm,
individual proteins and their associated functions are ordered in linear pathways, implying that every
function downstream is affected by an upstream block (left). In the network biology paradigm, networks of
interacting molecules are placed between genotype and phenotype. Each node (represented in blue)
represents a molecule of interest, such as a gene, any of its products, or smaller molecules, such as
metabolites. The edge between two nodes represents any type of relationship, such as protein-protein
interactions (blue lines), enzyme-substrate relationships (black arrows). Both nodes and edges may be subject
to perturbation (such as stimulus, inhibition, knockout, etc.). (b) Several prominent mass spectrometry
(MS)–based strategies are available. The most frequently used strategy is referred to as shotgun or discovery
proteomics. This strategy results in datasets that can identify vast numbers of proteins contained in
biological samples but is more likely to reproducibly detect the most abundant proteins. In directed
proteomics, specific, predetermined segments of a proteome are identified and quantified at a higher level of
reproducibility, compared to discovery proteomics. Targeted proteomics generates highly reproducible and
accurate datasets of a small, preselected fraction of a proteome (typically one to a few hundred peptides) with
high detection sensitivity and dynamic range. With recent advances in instrumentation, a fourth strategy
referred to as data-independent analysis (DIA) is emerging in which the identification of all proteins is
attempted for each sample. Abbreviation: DDA, data-dependent analysis.
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PPI: protein-protein
interaction

Yeast two-hybrid
(Y2H) screening:
a genetic technique
used to screen for
physical interactions
between pairs of
proteins

Notable projects have achieved a high degree
of coverage for proteomes (35–40) and selected
PTMs (41–43), have measured quantitative
changes in protein and PTM abundances (44–
48), and have estimated the absolute cellular
concentrations of significant fractions of pro-
teomes (36, 40, 49, 50). In many of these studies,
the main result is a list of abundance-modulated
proteins or modified peptides. Typically, one
or a few of the list’s elements are followed up by
classical biochemical or cell biology methods,
a strategy that may be successful but ultimately
not satisfactory because most of the informa-
tion collected in the proteomic screen remains
unused. Alternatively, the generated lists are
subjected to analysis by gene ontology enrich-
ment tools, pathway and signal transduction
databases, or protein-protein interaction (PPI)
databases (51, 52). The aim of these analyses
is (a) to relate the contents of the list to prior
knowledge in the form of protein functional
classes or pathways or (b) to provide a visual
concept of cellular processes, e.g., in the form
of a network (53). We see these analyses as post-
measurement network approaches in a molec-
ular biology paradigm, rather than studies
motivated a priori by network biology. As such,
although they may provide valuable knowl-
edge, this review does not further focus on such
studies.

APPLYING MASS
SPECTROMETRY–BASED
PROTEOMICS TO NETWORK
BIOLOGY

In the network biology paradigm, the tech-
nologies available to identify and quantify
molecules need to be applied to also de-
termine or infer and quantify the edges of
these networks, i.e., the wiring underlying
cellular networks. Measuring network edges by
large-scale “omics” studies has been addressed
primarily by two approaches. The first direct
approach uses the affinity between nodes to
capture the interacting molecules and to thus
directly measure an edge. This is exemplified
by technologies such as chromatin immuno-

precipitation followed by deep sequencing
(ChIP-seq) (54) or by affinity purification
(AP)-MS (see below). Second, the indirect
approach uses an assay to probe a relationship
between two nodes and to thus infer an edge.
This is exemplified by yeast two-hybrid (Y2H)
screening or genetic interaction networks (55).
The limited toolbox of experimental methods
to detect and quantify network edges raises the
important question of how dynamic networks
can be best studied. In a seminal study, Ideker
et al. (56) have addressed this question. They
described a generic road map for network bi-
ology, consisting of the following steps, which
can be applied iteratively: (a) defining an initial
network of nodes and edges from prior infor-
mation, (b) perturbing network components
and integrating the experimental data obtained
with the network model, and (c) refining the
network model to better predict experimental
data and phenotypes arising from the network.
During the past decade, these steps have been
explored by a multitude of experimental and
computational strategies (12–15).

Although the network biology paradigm
has progressed significantly at the conceptual
level, it is still substantially bound by molecular
biology data collection techniques. To support
the road map outlined above, MS-based
proteomics, like other data collection tech-
nologies, needs to be able to generate datasets
that minimally fulfill the following criteria:
(a) the data have to be complete, i.e., all the
network nodes and edges should be measur-
able; (b) the data need to be reproducible,
i.e., identical results should be obtained in
each repeat measurement of a network; (c) the
data have to be quantitative to detect dynamic
changes of network components; and (d ) the
data need to be measurable at a reasonable
throughput to allow iterations within a study.
Clearly, in meeting some of these criteria,
proteomics has lagged behind other genomic
technologies.

In the following sections, we describe steps
that have been taken in MS-based proteomics
to advance our ability to investigate and com-
pare networks via measurement of molecules.
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PIN: protein
interaction network

PSN:
protein-signaling
network

We also briefly review several network-driven
experimental and computational approaches
that show promise for use with proteomic data.
We structure our review to describe the ways
MS-based proteomics has been applied to the
generic road map of multidirectional network
biology (Figure 2a): The first tasks are to
identify the network components (nodes and
edges) as well as to describe network wiring
and the principles of the network organization,
the second task is to relate perturbations
to quantitative measurements to describe
dynamic network rewiring, and the third task is
to correlate dynamic network wiring with the
cellular phenotype. Finally, we discuss what
lies ahead for MS-based proteomics in the path
toward network models and their mechanistic
analysis and refinement.

For clarity of presentation, we distinguish
between two types of networks investigated by
MS-based proteomics: protein interaction net-
works (PINs) and protein-signaling networks
(PSNs). PINs are undirected networks, i.e., the
edges show no preferred direction, whereas
PSNs are directed networks, i.e., the edges
have a preferred direction. Clearly, a cellular
network is the sum of several such networks
(Figure 2b).

Importantly, the investigation of network
wiring by MS-based proteomics can benefit
from network data collected by other technolo-
gies. For example, genetic interaction networks
examine the dependency in function between
two genes, reported by a growth phenotype,
and represent a unique case in which the edges
are measured (as phenotypes) and nodes are not
explicitly measured. Genetic interaction maps
are often carried out under basal growth condi-
tions (55, 57) but have also been used to capture
context-specific interactions, such as a differ-
ential interaction map (58). Because of limited
throughput at present, MS-based proteomics
cannot be applied as a direct readout for genetic
interaction studies, but it can use the comple-
mentary information such screens provide to
highlight edges, which have functional signifi-
cance within the context of describing network
wiring.

DESCRIBING NETWORK WIRING

Here, we review how qualitative and quantita-
tive MS-based proteomic techniques have been
applied toward defining a qualitative network,
i.e., to support statements such as “protein X in-
teracts with protein Y,” in the case of PINs, or
“protein X is a target of protein Y,” in the case
of PSNs. Such a network is a prerequisite to
provide a comprehensive and reproducible de-
scription of the underlying cellular network
and to serve as an initial map for quantita-
tive/dynamic analyses.

Describing Protein
Interaction Networks

PINs, exemplified by protein-protein interac-
tion networks (PPINs), have been a major focus
of interest in MS-based proteomics mainly
because in these networks, in principle, both
nodes and the edges linking them are directly
measurable. The prototypical experimental
approach to study such networks has been
the use of a protein or other biomolecule as a
“bait molecule” to capture and isolate “prey”
proteins interacting with the bait, and to then
identify these proteins (bait and preys) by MS.
Although the following discussion mainly fo-
cuses on PPINs, proteins evidently also interact
with other molecules that represent vital parts
of the network (15). Studies focusing on inter-
actions between proteins and other (cellular)
molecules include those using RNA or drug
molecules as bait to capture and identify inter-
acting proteins (59–61). Conversely, proteins
have been used as bait to capture copurified
metabolites (62). Although these types of net-
works have not been investigated as routinely
as PPINs, they provide essential information
to understand the cellular network dynamics.

Prior to MS-based proteomics, the majority
of the PPIN data were collected by Y2H
screens, a proteomic technology with a high
throughput. Though the quality of the Y2H
PPI data has increased substantially over time
(55), the method interrogates only binary inter-
actions capturing only a subspace of the whole
interactome (57). Therefore, AP of tagged
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Describing wiring

Correlating wiring with phenotype or cellular response

Phenotype X

Describing dynamic rewiring

Phenotype Y

Perturbation

Cellular responses
and phenotypes

Protein interaction
networks are undirected

Protein-signaling
networks are directed

Given a set of protein
measurements

b

a
1 2

3

Combined cellular network
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POI: protein of
interest

AP MS: affinity
purification coupled to
mass spectrometry

Spectral count:
counting the number
of times a peptide is
identified in a dataset
as a proxy to its
abundance

proteins of interest (POI) and identification
of the copurified protein components by MS
(AP MS) (63) have become a preferred method
for the analysis of PPINs because the data it
produces reflect more closely the actual mul-
tidirectional complexity of a PPIN in the cell.
AP-MS data are then interpreted as a network
of PPIs, whereby two or more copurified nodes
are connected by edges. It should be noted
that the majority of these experiments are per-
formed in various cell lines and thus may not
reflect correctly the cellular networks in tissues.
Moreover, copurification does not necessarily
indicate a direct physical interaction, and
detailed information about the composition
and structural topology of protein complexes is
not directly apparent from AP-MS data. These
issues can be addressed by cross-linking tech-
niques and mass spectrometric analysis of intact
complexes and have been reviewed elsewhere
(63–66).

Inevitably as with every technology, AP MS
comes with concerns regarding the quality of
the obtained data. A first concern relates to
the possibility of false-positive PPIs because
in most species genetic manipulation is ineffi-
cient, and therefore, the tagged protein is often
overexpressed from an expression vector and
not expressed from the endogenous locus. This
will remain an issue until techniques for tagging
proteins by genetic manipulation of human cell
lines (67) or tagging proteins in whole animals
(68) is as feasible as tagging those for yeast
cells. One method, suggested to circumvent
this issue, is by expression of the protein
from a bacterial artificial chromosome (69).

Another way to avoid the problem is by im-
munoprecipitation of the endogenous protein
whenever an antibody is available. For example,
Malovannaya et al. (70) performed more than
3,000 immunoprecipitation experiments of
endogenous proteins, including reciprocal
immunoprecipitations, and uncovered in their
vast dataset core complex modules, unique core
“isoforms,” and complex-complex interactions.

A second concern in this type of experiments
is the identification of true and specific PPIs as
opposed to nonspecifically copurified proteins.
A simple approach to overcome this problem is
the identification of common contaminants that
copurify nonspecifically owing to their “stick-
iness” to the matrix or the tag affinity reagent
(71, 72). Another way of addressing contami-
nants is by using quantitative interaction pro-
teomics to compare an AP of a tagged POI to an
AP that represents the unspecific background,
for example, an untagged POI. A similar abun-
dance of a protein in both purifications would
indicate the protein is a contaminant (69, 71, 73,
74). On the basis of this concept, several scor-
ing algorithms were developed to estimate the
likelihood of an interaction by different metrics
derived from a protein’s spectral counts, thus
extracting contaminants and identifying “true”
interactors (75–77).

Thus far, much effort has been put into
providing a description of the cellular PPIN.
Several studies have addressed the landscape of
PPINs through the analysis by AP MS of large
groups of POIs: 75 human deubiquitinating
enzymes (76); 32 human proteins linked
to autophagy and vesicle trafficking (78); a

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
(a) Given a set of protein measurements by mass spectrometry (MS)-based proteomics, three tasks are faced
with the generic road map of network biology: The first tasks are to identify the network edges and to
describe network wiring, the second task is to relate perturbations to quantitative measurements to describe
dynamic network rewiring (depicted as a variance in the weight of edges), and the third task is to correlate
dynamic network rewiring with the cellular phenotype (depicted as yellow nodes). (b) Two types of networks
are investigated by MS-based proteomics: Protein interaction networks are undirected networks, i.e., the
edges show no preferred direction. Protein-signaling networks are directed networks, i.e., the edges have a
preferred direction. The cellular network integrates a variety of those networks, which in proteomics are
often investigated separately.
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genome-scale analysis of protein complexes in
the bacterium Mycoplasma pneumonia (79); and
276 kinases, phosphatases, regulatory subunits,
and their scaffolds in yeast (80).

Frequently, PPIs are modulated by PTMs.
Vermeulen et al. (81) identified histone mark
“readers,” proteins that interact with histone
tail peptides trimethylated at various lysine
residues. For selected readers, they inspected
their interactomes by AP MS, the correspond-
ing genomic binding sites by ChIP-seq, and
their binding strength in the context of combi-
natorial histone modifications. This study cer-
tainly suggests that describing networks in the
future will also have to account for the involve-
ment of PTMs in forming these interactions.

Organizing networks into complexes. AP
MS provides a description of the network
wiring in the form of edges between nodes
identified by MS, but it does not explicitly
identify the composition of protein complexes.
Therefore, after refining the PPIN for true
interactions, the next challenge is to infer true
protein complexes from AP-MS data. Experi-
mentally, for any type of AP, a reciprocal AP of
the identified copurifying proteins can greatly
improve the confidence in the annotation of
these relationships and refine the identification
of putative complexes (70). Another approach,
applied in yeast, is the AP MS of the same bait
protein from various strains that were deleted
for known interactors. This enabled capturing
information about the association between ev-
ery bait and prey, as well as every prey and the
deleted known interactor (82), providing infor-
mation about how the complex is assembled.
In essence, both reciprocal AP and analysis by
deletion tackle the identification of complexes
by attempting to address the undirected edges
in the PPIN from both ends (nodes). Com-
putationally, PPI data have been used to infer
complexes from the network topology either
by various graph-based approaches (83) or by
using MS quantitative data. This has been at-
tempted by nested clustering (84), a biclustering
approach, in which baits are first clustered by

normalized spectral counts, and then preys are
clustered within their respective bait clusters.

In sum, describing the wiring of PPI
networks has seen significant advances in
throughput and reproducibility of data col-
lection. However, the technique is still far
from being comprehensive, as with a few
exceptions, such as yeast, for most species only
small subsets of their respective proteomes
have been thus far covered. Furthermore,
PINs, other than PPINs, have been even more
challenging to analyze.

Describing Protein-Signaling
Networks

PSNs, exemplified by enzyme-substrate rela-
tionships, have been a second focus of interest
in MS-based proteomics, particularly in the
case of enzymes, which modify their substrate
by a PTM. The addition or removal of a PTM
to or from a peptide results in a change in mass
detectable by MS. In PSNs, the interaction
between pairs of an enzyme and a substrate
tends to be very transient, and its significance
lies in the directed transduction of a signal,
represented as a directed edge. To describe
the wiring of a PSN, we would require re-
producible and comprehensive measurements
of all proteins involved, thus determining all
edges. In particular, the molecular context of
these signaling events, in space and time, is also
provided by a framework of other proteins,
such as adaptor and anchor proteins (85).
However, although, in a PPIN, an edge is
measured by the concurrent measurement of
the two connected nodes, in a PSN, this is not
always feasible owing to the transient nature of
interaction. Consequently, often only one node
(a substrate, for example) of two connected
nodes can be measured, and edges need to
be inferred. Therefore, much more effort has
been put in PSNs to first describe their wiring.
As these edges are functional in nature, one
could either attempt to identify the edges from
qualitative data or attempt to infer edges from
quantitative data (Figure 3). In particular, per-
turbation experiments in which defined stimuli
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Describing
network wiring

Dynamic
network
rewiring

Enzymatic
assays

AP MS

Y2H

Genetic
interaction

screen

Perturbation
analysis 

Profiling
enzymatic

activity

Computational

Experimental

Correlating
network wiring
to phenotype

AP MS

AP SRM

Projecting
data on static

networks

Kinase-
selective

enrichment

Cue-signal
response

Network
reverse

engineering

Enzyme-
substrate

prediction

Figure 3
Describing protein-signaling network (PSN) wiring can be performed by either attempting to identify the
edges from qualitative data or attempting to infer edges from quantitative data. The yeast two-hybrid (Y2H)
system and affinity purification mass spectrometry (AP MS) have been applied to describe protein interaction
networks, and various approaches have been applied to assay the relationship between enzymes and
substrates. Genetic interaction screens provide complementary information. Dynamic network rewiring in
which defined stimuli are used to induce rewiring of the network may highlight the structure of an
underlying PSN. It is performed by quantitative analysis of AP-MS or AP-SRM (selected reaction
monitoring) experiments and by perturbation experiments using small molecules or gene deletions.
Correlating network wiring with phenotypes can use the underlying network of static protein-protein
interactions to identify subsets of nodes that have certain network properties and correspond to a given
phenotype. Alternatively, the activity of proteins, such as kinases, can be correlated with a given phenotype.
In addition, correlating network rewiring with cellular response can be achieved using cue-signal-response
compendiums in which samples are perturbed with various cues, preselected network nodes, and cellular
phenotypes measured in these samples, and the resulting data are subjected to statistical and modeling
frameworks to examine/investigate the signals and responses and to identify those of significance.

are used to induce rewiring of the network may
highlight the structure of an underlying PSN.
This is discussed further in the next section.

In reviewing PSNs, we refer mainly to pro-
tein phosphorylation as a prototypical example
of a PSN. Protein phosphorylation is a PTM
that has received much attention in proteomics,
fueled by rapid improvements in recent years
in the enrichment of phosphopeptides from

proteome extracts (86–88). More than 160,000
phosphorylation sites are now documented
in publicly accessible databases, such as Phos-
phoSitePlus (89). This vast amount of sites rep-
resents the accumulation of data from various
studies, and the identification of sites of phos-
phorylation has become a success story for the
application of MS-based proteomic methods
used within the molecular biology paradigm.
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However, delineating the PSN, i.e., defining
which kinases phosphorylate these phospho-
rylation sites, has lagged behind. Even more
challenging have been the questions of which
phosphatases dephosphorylate these phospho-
rylation sites and which other regulatory pro-
teins are involved. Several experimental and
computational approaches to provide a descrip-
tion of the kinase-substrate relationships by
proteomics have been undertaken (Figure 3).
They mainly include in vitro kinase assays, pre-
diction of putative kinase-substrate relation-
ships, and perturbation experiments (90, 91).

Methods that are based on in vitro kinase
assays provide the most direct data to describe
kinase-substrate relationships. For example,
Mok et al. (92) conducted protein microarray
kinase assays in which a yeast proteome was im-
mobilized on microarrays and incubated with
radiolabeled ATP and a kinase of interest. In
a conceptually similar approach, peptides were
spotted on an array format and phosphorylated
by purified kinases to determine consensus
recognition motifs or kinases (93). However,
the substrates identified in vitro may not
represent the bona fide in vivo set of substrates.
MS-based proteomics applied to analyze the
products of in vitro kinase reactions would ob-
viate the need for radiolabeled ATP and, more
importantly, would enable the identification of
the phosphorylated residue(s). One successful
method relies on engineering a kinase to
accept unnatural ATP analogs by modification
of the ATP-binding pocket, resulting in the
specific thiophosphorylation of a substrate.
Substrates of such an engineered kinase are
then identified by enrichment of thiophospho-
peptides, which can be readily identified by MS
(94, 95).

Another approach to capture enzyme-
substrate relationships is to stabilize the tran-
sient interaction between the two molecules.
Bloom et al. (96) expressed in yeast catalyti-
cally altered Cdc14 phosphatase mutants that
trapped their substrates. Substrates can there-
fore be isolated while bound to the enzyme and
identified by AP MS. “Substrate trapping” has
also been applied to a kinase by cross-linking a

kinase and a mutated substrate with a specific
cross-linker (97).

Finally, a variety of tools have emerged in
recent years to predict which kinases putatively
phosphorylate a given phosphorylation site,
relying on amino acid sequence motifs and
a variety of computational methods (91). Of
these, NetworKIN (98) should be specifically
mentioned because it also uses probabilistic
protein association networks. A shortcoming of
kinase-substrate predictions is the slower rate
at which refinement of kinase consensus motifs
occurs, compared to the higher rate at which
phosphoproteomics data are acquired. More-
over, these methods do not take into account
information from quantitative measurements
and rely mostly only on sequence information.

A different computational strategy to infer
the wiring of a signaling network is referred
to as reconstruction or reverse engineering.
Variants of this strategy have been mainly ap-
plied to microarray data (reviewed in Refer-
ences 99 and 100). These methods attempt to
identify causal relationships between network
nodes from quantitative omics data, such as the
transcription factors that control modules of
coregulated transcripts in the case of microar-
ray data. To the best of our knowledge, MS-
based proteomics data have not been used in
such approaches, but there is a clear analogy
between transcription factors and transcripts
measured by microarrays and kinases and the
phosphorylation sites measured by phospho-
proteomics. However, network inference is not
a trivial computational task, and it might not be
easily generalized and transferable to MS-based
proteomics data.

Other modifications have also been sub-
ject to large-scale MS analyses, such as N-
terminal and lysine acetylation (41, 101) and
N-glycosylation (43). In these studies, thou-
sands of the modified sites have been iden-
tified, attesting to the breadth of the iden-
tifiable PTM landscape. As in the case of
phosphorylation, proteins modified by these
PTMs and others are most successfully identi-
fied after enrichment. Several studies in recent
years have also addressed the identification of
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AQUA: absolute
quantification using
synthesized peptides,
incorporated with
stable isotopes and
spiked in a known
concentration into
samples as internal
standards

proteins modified by ubiquitin and ubiquitin-
like modifications, which are small conserved
proteins themselves that covalently modify
other proteins in a reversible manner (102,
103). In contrast to the rapid increase in stud-
ies focused on detecting dynamic change of the
phosphoproteome in perturbed cells, the anal-
ysis of ubiquitome thus far has lagged behind
and has mainly focused on the identification
of modified proteins and sites in steady state.
Argenzio et al. (104) have explored the epi-
dermal growth factor (EGF)-regulated ubiquit-
ome by a quantitative analysis of cells untreated
or treated with EGF. Kim et al. (105) and
Wagner et al. (106) used a novel antibody to
monitor changes in the ubiquitome in response
to proteasomal inhibition. The cleavage of pro-
teins by proteases has also been investigated as
a modification in itself, by probing the activity
and specificity of proteases (107, 108), as well as
by identification of protease cleavage products
(109, 110). As there are hundreds of proteins
putatively involved in these various protein
modifications, clearly the analysis of the cor-
responding signaling networks is even further
in the future than for protein phosphorylation.

DYNAMIC NETWORK REWIRING

MS-based proteomic techniques have been
applied toward identifying and quantifying
changes in network wiring in response to stim-
uli or under different physiological conditions.
For the most part, these techniques have been
used in the molecular biology paradigm to
detect abundance changes in network nodes.
In the following section, we review studies
that focus on either quantifying changes in
known edges or identifying novel perturbation-
specific edges, thus describing in detail novel
network wiring (mentioned in the section
above).

Dynamic Rewiring of Protein
Interaction Networks

To date most PIN, particularly PPIN, studies
have been performed under basal conditions.

They do not, therefore, include information
about dynamics or reorganization of these
PPINs. Understanding the dynamic nature of
PPINs as a function of time and/or condition
requires quantification of the proteins that are
retained, released, or recruited into a complex
in response to a perturbation. Few studies so far
have attempted time- or perturbation-resolved
dynamics. Examples of these studies include
the FoxO3A interactomes in response to phos-
phatidylinositol 3 kinase inhibition (73), the
dynamics of the extracellular signal-regulated
kinase 1 interactome in response to the EGF
and nerve growth factor (111), and the dy-
namics of the circadian rhythm gene frequency
(FRQ) interactome during the course of a day
(112). In work closing the gap to translational
use of PPIN knowledge, Aye et al. (113) applied
a chemical proteomics approach to tissue sam-
ples of human patients to demonstrate that the
PPIN profile of the regulatory subunit of pro-
tein kinase A with several of its scaffold proteins
became severely altered in the failing heart.

Several techniques have been applied to
resolve changes in complex composition:
Wepf et al. (114) used a reference peptide,
dubbed SH-quant, as part of a protein’s affinity
tag to calculate the absolute amounts of bait
proteins and, by correlational quantification,
the amounts of the prey proteins in various AP
samples. This approach was then used for the
analysis of perturbation-induced quantitative
changes in the composition of the protein
phosphatase 2A complex, thus resolving
protein-complex abundance and dynamic
changes in complex components by combining
the labeled peptide with label-free quantifi-
cation. Bennett et al. (115) mapped the basal
cullin-RING ubiquitin ligase network and then
investigated the changes in the network in re-
sponse to deneddylation. Moreover, they used
AQUA peptides (116) and MS quantification to
determine changes in the subunit occupancy of
the cullin-RING ubiquitin ligase network. The
use of targeted proteomics can facilitate the val-
idation of larger numbers of interactors at high
sensitivity and throughput. For example, Bisson
et al. (117) used a method they termed AP-SRM
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to study the dynamics of PPINs. They first
identified novel interactors of growth factor
receptor-bound protein 2 (GRB2), a scaffold
protein involved in tyrosine kinase receptor sig-
naling. They then generated SRM assays for 90
interactors and used them to provide a quanti-
tative temporal analysis of the GRB2 PPIN fol-
lowing stimulation with EGF, as well as analysis
of growth factor-specific GRB2 PPIs. The suc-
cess of these studies suggests that the PPINs will
increasingly be studied as dynamic networks
using SRM-based targeted-MS techniques.

Dynamic Rewiring of
Protein-Signaling Networks

Perturbation experiments try to capture the
effects of modulating an enzyme activity (inhi-
bition or activation) in a cellular context. The
dynamic rewiring of the network could then
lead to a context-specific description of the
network wiring, which is expected to provide
new physiological insights compared to in vitro
experiments (Figure 3). Two conceptual types
of perturbations can be pointed out in the
context of network biology: those that affect
mainly the edge(s) versus those that affect
mainly node(s) and inevitably also their edge(s)
(118). Perturbation information comes at the
cost of increased complexity and treads a fine
line between dependency, causality, and the
off-target effects of the molecules used.

In one perturbation setup to study phos-
phorylation networks, a comparison is made
between untreated cells, cells treated with a
stimulus, and cells treated with a stimulus in
the presence of a kinase inhibitor (for example,
References 119 and 120). This experiment
can be combined with phosphoproteomics,
and from such perturbations, phosphopeptides
downregulated in the presence of the inhibitor
are considered as kinase dependent, although
not necessarily directly kinase mediated. In the
context of kinase-substrate networks in which
kinase specific inhibitors are employed, it is
important to remember that inhibitors actually
cover a wider range of kinases at different

selectivities (121). This is important not only
for clinical investigation of these molecules,
but also for biologists interested in the inter-
pretation of experimental perturbation data.
To circumvent the issue of inhibitor specificity,
several groups have adopted the approach of
using analog-sensitive kinases, which have
been mutated at the ATP-binding pocket to
be specifically and rapidly inhibited by the
pyrimidine-based inhibitor, 1-NM-PP1 (122).
Holt et al. (123) used this approach to identify
novel putative substrates of cyclin-dependent
kinase 1 (Cdk1) by identifying those phospho-
rylation sites that conform to Cdk1’s known
consensus motif and were downregulated upon
Cdk1 inhibition. In a few cases, a phosphoanti-
body is available for the known consensus motif
of a kinase and can be used as an affinity reagent
to enrich phosphopeptides from samples in a
quantitative experimental setup in which the
kinase is activated/inhibited (124, 125). Such
samples are then compared by quantitative
proteomics to suggest substrates for this known
kinase.

One should note that dependence does not
necessarily indicate that these are true sub-
strates because phosphorylation sites may pre-
sumably be regulated by other kinases, which
are themselves regulated. Thus, as phospho-
proteomics applied in such setups is an indirect
measurement of edges that have to be inferred,
it may give only a limited scope of the kinase-
substrate relationships embedded in the data.
However, it can provide insights to the func-
tional organization of a stimulus-dependent
phosphoprotein network, e.g., proteins identi-
fied in phosphoproteomic screens of perturbed
cells are clustered to identify groups of coreg-
ulated proteins, and the resulting clusters are
projected onto static PPIN data (46, 119, 126).

From a network perspective, inhibition of
a kinase by a small and specific molecule is an
“edgetic” approach, removing those edges that
represent kinase-substrate relationships. Per-
turbation can also be carried out by remov-
ing a node completely, for example, by dele-
tion of the gene. This would affect not only
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kinase-substrate relationships, but also kinase
interactions with other proteins. Detecting the
effects of deleting kinase nodes may be prob-
lematic as these effects might be compensated
for over time. Bodenmiller et al. (47) analyzed
phosphoproteome samples from a large selec-
tion of yeast strains in which kinase and phos-
phatase genes were deleted. The loss of most
of these has perturbed significant parts of the
phosphoproteome, but only about half of them
in the expected direction (e.g., downregulation
of a phosphopeptide when a kinase is deleted).
These data indicate that the overall wiring of
PSNs and their perturbation-induced rewiring
is currently beyond the range of MS-based pro-
teomics.

Although these studies tend to be global
in approach, two recent studies focused on a
specific subset of kinase-substrate relationships
and limited their scope of interest in network
rewiring to a well-defined biological question.
Jorgensen et al. (127) examined bidirectional
signaling initiated by cell-cell contacts, studied
by the coculture of two cell lines and analysis
of their tyrosine phosphoproteomes. The
data were used along with results from an
siRNA and predicted kinase-substrate net-
works and PPINs to derive a network model
of cell-specific information. Coba et al. (128)
examined changes in the phosphoproteome of
the neurons’ postsynaptic density in response
to N-methyl-D-aspartate. Combining these
data with information on activated kinases,
identified by the Western blot method and in
vitro kinase assays on peptide arrays, enabled
them to formulate a putative kinase-substrate
network of the synapse, benefiting from the
lower complexity of postsynaptic density
compared to a whole cell. Both of these studies
pooled descriptive and perturbation-related
quantitative data and suggest an inferred wiring
of the kinase-substrate relationships. Although
successful, both also highlight that MS-based
proteomics applied in perturbation setups is
still resulting in the description of network
wiring and is not rigorously applied to quantify
dynamic rewiring per se.

CORRELATING NETWORK
WIRING WITH PHENOTYPES

In a network paradigm, we wish to know how
networks capture and process information to
induce specific cellular responses or pheno-
types. Ideally, to correlate specific network
structures with phenotypes, subtle rewiring of
specific networks would need to be detected and
quantified and related to well-defined, quantifi-
able phenotypes. Both the detection of network
changes and the definition of quantitative phe-
notypes are challenging. It is therefore not sur-
prising that studies in the field are sparse. A sig-
nificant fraction of the published studies to date
attempt to relate clinical phenotypes to changes
in cellular networks, particularly in the field of
cancer biology.

Correlating Network Wiring
with Phenotypes for Protein
Interaction Networks

The actual measurement of PPINs and their
dynamic change remains technically challeng-
ing. This is in contrast to the description of
static PPINs, where significant progress has
been achieved. Several studies have therefore
attempted to use static PPINs as a priori knowl-
edge to investigate correlations in experimental
data generated by various technologies. An un-
derlying network, e.g., a static PPIN, is used
to identify subsets of genes that have certain
network properties and correlate with a phe-
notype (Figure 3). These have been success-
fully applied in combination with large-scale
nucleic acid data. For example, Taylor et al.
(129) constructed a large-scale PPIN and then
used the average Pearson correlation coeffi-
cient to quantify the extent to which a hub
and its interacting partners were coexpressed.
They investigated a cohort of sporadic, nonfa-
milial breast cancer patients and detected 256
hubs that displayed altered Pearson correlation
coefficients of expression between groups with
different clinical outcomes. Mani et al. (130)
constructed a network by combining PPI data
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and protein-DNA interaction data measured by
microarray technology and searched for genes
with unusual numbers of edges, which show a
change in correlation in a phenotypic subset of
the samples. The ranked list can then be pre-
sented in the context of the constructed net-
work. Rather than using a global static PPIN,
Chang et al. (131) focused on the analysis of
confined networks. First, an initial set of genes
in a local network was defined, e.g., the interac-
tors of an oncogene, which was then expanded
to identify sets of genes whose signatures re-
flect modular aspects of expression variation.
The activity of selected signatures was inves-
tigated in a panel of cancer cell lines and tu-
mor samples. In this study, focused on local
networks, the novel signatures are anchored to
well-known network modules or local networks
and may point to novel mechanisms within
the initial context. Of note, Nibbe et al. (132)
used targets from a proteomic screen as seeds
for searching significant subnetworks in col-
orectal cancer, which included direct interac-
tors as well as “crosstalkers,” proteins in the
neighborhood of seeds. Subnetworks were then
scored, using mRNA expression data, to esti-
mate the significance in differentiating tumor
from control samples, allowing data integration
regarding dysregulation at both mRNA and
protein levels. Finally, in a unique approach,
Lage et al. (133) integrated phenotypic data
from targeted mutations in mice with PPIN
data to describe a functional network under-
lying cardiac development. This is perhaps a
simple example of a switch from the one gene-
one protein-one function paradigm toward the
network biology paradigm, where molecular
networks are viewed as the determinants of
phenotypes.

The above summary indicates that, to date,
most studies that attempt to correlate molec-
ular networks with phenotypes have combined
large-scale, typically static proteomic data
with other data resources. The validity of the
conclusions derived from correlating quantita-
tive data and network knowledge depends on
the coverage and correctness of the network,
the quality of the data, and the method of

correlation calculation. Furthermore, the
results do not necessarily suggest causality.

Correlating Network Wiring with
Phenotypes for Protein-Signaling
Networks

As for the use of MS-based proteomic data to
describe the wiring and rewiring of PSNs (dis-
cussed above), most of the literature investigat-
ing the connection of PSNs with phenotypes
has been focused on protein kinase-substrate
networks. The following discussion is therefore
also focused on protein phosphorylation but ex-
emplifies other types of PSNs as well.

Protein kinases are attractive drug targets
(121). For this reason, it is of interest to
correlate the activity of a kinase with a given
phenotype. Studies that attempted to unravel
kinase-substrate relationships have indicated
extensive indirect and compensatory effects,
suggesting a complex and yet incompletely
understood kinase-substrate network (47;
see the Dynamic Network Rewiring section
above). These data also suggest that discerning
the rationale for pharmacologic inhibition
of protein kinases with the aim of affecting
disease phenotypes will be most successful in a
network biology paradigm.

Several studies have generated activity
profiles of kinases in biological samples. Rivoka
et al. (134) examined the extent of tyrosine
phosphorylation across many carcinoma cell
lines and tumors, assuming that the degree of
phosphorylation of the kinase correlated with
its state of activity. In a more direct approach,
Cutillas et al. (135) used MS-based proteomics
to quantify a specific phosphopeptide as a
surrogate for kinase activity. The peptide in its
unphosphorylated form was incubated with a
cell lysate and ATP, and after the reaction was
quenched, the abundance of the phosphory-
lated form of the peptide was quantified using
a spiked-in internal standard. Kubota et al.
(136) applied a similar approach, but with 90
peptides, in a multiplexed manner. Although
not every peptide could be assigned to a unique
kinase, profiles of activity could be inferred and
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were shown to differ between different cell lines
and in response to stimuli. In these methods,
the signal indicating kinase activity is amplified
by the kinase reaction, making even low-
abundance kinases detectable, provided they
are active. Extending such approaches to a com-
plete kinome level will remain challenging as
long as the wiring of the basic kinase-substrate
network remains incomplete. Daub et al. (137)
therefore profiled the phosphoproteome of
kinases themselves by kinase-selective enrich-
ment via affinity chromatography, followed by
phosphopeptide enrichment. Monitoring reg-
ulatory phosphorylation sites on the enriched
kinases, such as phosphorylation events on the
activation loop, can then be used as a surrogate
marker for changes in kinase activities. The
use of kinase inhibitors as affinity reagents is
attractive as it can allow capturing dozens of
kinases at a time (137, 138). However, the
analysis may become complicated in the case of
some inhibitors for which the binding affinity
of the kinase depends on its activation state and
is therefore influenced by the phosphorylation
of the activation loop (139).

Given the difficulties of relating complete or
extensive PSNs to phenotypes, it is no surprise
that studies focused on smaller subnetworks,
and selected network nodes have progressed
faster (reviewed in References 13, 14, and
140). Such studies are exemplified by the
“cue-signal-response” (CSR) compendiums,
a type of data acquisition where multiple,
typically several dozen, samples are perturbed
with various cues—molecules affecting a
certain signaling network. Preselected net-
work nodes and cellular phenotypes are then
measured in these samples, and the resulting
data are subjected to statistical and modeling
frameworks to correlate signals with responses.
For example, Janes et al. (141) stimulated
colon adenocarcinoma cells with nine com-
binations of tumor necrosis factor, EGF, and
insulin (cues), and collected 19 intracellular
measurements of the known underlying sig-
naling network (signals) and four apoptotic
outputs (responses) along 13 time points. The
compendium collected was then analyzed

using a data-driven modeling approach to map
relationships between the phosphorylation
signals measured and cellular death responses.
The model captured the two canonical axes
of the cellular response, e.g., apoptosis versus
survival, and identified previously unknown
components of the signaling network, such as
autocrine feedback. Saez-Rodriguez et al. (142)
applied a different computational approach and
used such a compendium to calibrate Boolean
logic models of a literature-derived signaling
network. They found that a Boolean model,
even though it captures only two activation
states (on and off), can still fit experimental
data and therefore can be used as an approach
to harness knowledge already available. The
method applied by Janes et al. does not neces-
sarily require a priori mechanistic knowledge
(143), but it does entail choosing the informa-
tive combinations of CSR, which means a study
based on prior knowledge is more likely to
provide informative insights. Importantly, al-
though it provides a condensed set of the most
informative measurements that fit the data to
a model, at the same time the method may
overlook key condition-specific modulators,
if these conditions are not properly addressed
(144). Nelander et al. (145) suggested a method
to derive a network structure without any a
priori knowledge by applying a CSR setup that
includes multiple inputs of drug combinations
and measuring multiple outputs of phospho-
proteins and phenotypes. Although nodes
in the final model are defined as only those
precisely perturbed or measured, the model
could nevertheless recapitulate known rela-
tionships. Finally, Mitsos et al. (146) suggested
an approach to identify alterations in a path-
way/network of interest in response to drug
treatment, regardless of the cellular phenotype.
A cell-type-specific network was constructed
using integer linear programming and a com-
pendium of phosphorylation site measurements
in cells treated with cytokines and known spe-
cific inhibitors. The effects of a given drug were
detected by reapplying this procedure with the
drug instead of the known inhibitor and by
identifying altered edges in the model, inferred
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as drug specific. This approach does not
require the measurement of responses, only
cues and signals are measured, but it does
require a priori knowledge for the network
construction and does not offer a uniquely
optimal solution.

What the above studies have in common
are datasets of relatively few (typically a dozen
or so) selected network nodes that were
quantified in multiple perturbed samples and
that provided insights to the dynamic rewiring
correlating to the phenotype. Interestingly,
the majority of these data were generated by
quantitative Western blotting, a technique
that is limited by the availability of antibodies
specific for the selected network nodes. It can
be expected that the use of suitable MS-based
proteomic techniques for CSR compendiums
will derive significant advantages. First, the
selection of measured network nodes will no
longer be constrained by the availability of
antibodies: In principle, every protein or phos-
phorylation site should be measurable. Second,
the number of quantified nodes can be extended
with a modest increase in experimental cost.
Third, the quantitative accuracy of MS-based
proteomics should exceed that of Western blot-
ting, and fourth, the sample throughput should
be dramatically increased. However, the ad-
vantages MS-based proteomics can offer might
cause a dramatic increase in computational cost.

As discussed above (see the Mass
Spectrometry–Based Proteomics section),
different mass spectrometric strategies dif-
fer in their performance profiles. Targeted
proteomics by SRM is the method of choice
if a limited number of analytes needs to be
quantified in multiple samples at a high level
of reproducibility, sensitivity, and quantitative
accuracy, as is the case in the generation
of CSR compendiums. The performance
of this approach to study the dynamics of
biological networks and the resulting pheno-
type was demonstrated in two recent studies.
Costenoble et al. (45) developed SRM assays
for 228 proteins that constitute the central
carbon and amino acid metabolic network of
yeast. This set of proteins was then quantified

at five metabolic states. The data uncovered
nutritional environment-dependent changes in
protein abundances and identified isoenzymes
that are preferentially expressed at specific
states. The data also suggested that metabolic
proteins, which are, according to current
network models, not required for growth
under certain nutritional environments, are
still expressed, presumably to allow adaptation
to rapid changes in environment. In a related
study, Picotti et al. (44) quantified a more
limited set of metabolic proteins in a series of
samples collected across different metabolic
shifts. Clustering of the resulting quantitative
profiles indicated sets of proteins in the
metabolic network that are subject to com-
parable transcriptional/translational control.
These studies demonstrated that the nodes of
a known network if selected and targeted can
be quantified over the whole dynamic range
of protein expression in yeast cells. One of
the bottlenecks of SRM is the need to design
optimal assays for each protein by using a
unique set of peptides and their respective
transitions. Recently, experimental and com-
putational approaches have been developed to
allow faster and more accurate development
of these assays (27, 147–149), and for selected
species, databases containing assays for each
protein of the respective proteome are being
developed. We therefore expect a significant
increase in the use of targeted-MS proteomics
for CSR compendiums and for the analysis of
network-phenotype relationships in general.

OUTLOOK

The network biology paradigm places networks
of interacting molecules between genotype and
phenotype. It makes the assumptions that the
network wiring is dynamically and multidirec-
tionally modulated in response to external and
internal stimuli and that such changes deter-
mine phenotypic changes. The abilities of MS-
based proteomics to describe network wiring,
to capture dynamic rewiring of networks in
response to stimuli, and to correlate network
wiring to phenotypes are constantly advancing.
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MS-based proteomics faces major tech-
nological challenges in achieving the goals of
comprehensive, reproducible, and quantita-
tive description of proteomes at reasonable
throughput. As these challenges are addressed,
new ones arise. For example, with the rapid
increase in throughput, estimating the level
of confidence in assignment of MS spectra
to peptide sequences is often performed by
statistical analysis at a fixed false discovery rate.
Over time, this can result in the accumulation
of false data if large datasets are combined (150,
151). With the introduction of modeling into
proteomics, we also hope to see application
of experimental design optimization (152) not
only with respect to statistical design issues
(153), such as replication and blocking, but
also with respect to choosing the informative
time points, observables, and measurements.

There is no doubt that the rigorous im-
plementation of network biology will require
the development of a range of new (proteomic)
technologies that are focused on identifying and
quantifying the edges of dynamic networks. Al-
though the description of PPINs has seen much
progress, the description of interactions be-
tween proteins and other molecules, and the
description of the PSN, has lagged behind. For
the latter, we expect new experimental setups
to address the relationships between enzymes
and their substrates for various types of PTMs.
Techniques to describe network rewiring in
response to stimuli have been only recently
emerging, and we still largely lack their applica-
tion to measuring dynamics of known signaling
edges. In this respect, datasets that attempt to

measure not only nodes or edges, but also cellu-
lar responses to correlate them with, would ad-
vance the ability to harness proteomics to net-
work biology.

Ideally, the PPIN and the PSN are evaluated
in their genuine biological context. At present,
the tools are not yet fully developed to chart
the PPIN and the PSN in primary cells, tissues,
or whole mammalian organisms. Although the
basic wiring of PPINs and PSNs may be highly
conserved (even from yeast to human), an extra
dimension of complexity will be provided by
the tissue-, cell-, and organelle-specific features
of PPINs and PSNs. Optimistically, many of
the proteomics strategies described here may
be transferable to analysis of tissue and even of
whole mammals.

Finally, using information already gathered
to generate new knowledge is a task performed
less often in MS-based proteomics. We would
like to see more data being used as the gener-
ation of informative datasets is refined. At the
moment, we deposit large datasets for wet lab
biologists to use, with no knowledge if it is ac-
tually employed by them. We thus believe that
the transition to network biology approaches
and applying modeling will not only provide
a new wealth of knowledge but also improve
proteomic measurements, moving from “what
can we measure” to “what should we mea-
sure.” An iterative approach in which network-
driven biological questions are addressed by
MS-based proteomics, combined with compu-
tational modeling and used to guide the selec-
tion of the next set of experiments, will drive
our understanding of biological complexity.

SUMMARY POINTS

1. The new paradigm emerging is typically referred to as systems biology, network biology,
or integrated biology. Although molecular biology is concerned with the network nodes
involving one-dimensional pathways, the new paradigm entails network nodes and edges
and places multidimensional and multidirectional networks of interacting molecules
between genotypes and phenotypes.
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2. Until recently, mass spectrometry (MS)-based proteomics has been used predominantly
to identify, characterize, and quantify network nodes without consideration of their con-
text. While the results from such analyses have increased in volume (longer lists) and
confidence, the amount of new biology learned has been moderate.

3. Recently, MS-based proteomics has been used to identify network edges, e.g., describe
network wiring. Affinity purification followed by MS has been used to interrogate
protein-interaction networks. In vitro assays and perturbation experiments have been
used to describe or infer protein-signaling networks (PSNs).

4. Describing the dynamic multidirectional rewiring of networks has been emerging re-
cently in MS-based proteomics. Applications to PPINs include the measurement of dy-
namic changes in protein complexes, whereas applications to PSNs have mainly focused
on perturbation experiments used to infer network wiring.

5. Correlating network wiring to phenotypes using proteomics data has been mostly ap-
plied by combining static PPINs with dynamic microarray data. Correlating dynamic
proteomic PPIN and PSN data awaits application, and cue-signal-response (CSR) may
be an experimental setup for this task.

6. Overall, it is apparent that the MS-based proteomic technologies developed within the
molecular biology paradigm are useful but not sufficient for network biology. Concep-
tually, new technologies, rather than incremental advances of current technologies, will
therefore be required.

FUTURE ISSUES

1. Can a comprehensive coverage of a complex proteome be obtained in a reproducible
manner, with high quantitative accuracy, and at moderate to high throughput?

2. Given that most data collected to date are under basal conditions, how can AP-MS
workflows be improved to allow quantitative dynamics of network rewiring?

3. How can the identification or inference of edges in PSNs and their dynamic changes be
improved to be quantitative, reproducible, and comprehensive? Can large-scale dynamic
rewiring be captured by MS-based proteomics?

4. How can MS proteomics be applied to collect CSR compendiums? Considering their
complexity, how can these be analyzed computationally?

5. How can computational analysis of prior data be used in experimental design to direct
optimal MS proteomic measurements?

6. Will MS-based proteomics generate data for mechanistic models of signaling networks?

7. How can emerging proteomics technologies that probe network biology be efficiently
transferred to primary cells, tissue, and whole animals?
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48. Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, et al. 2009. Phosphorylation dynamics during
early differentiation of human embryonic stem cells. Cell Stem Cell 5:214–26

49. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. 2011. Global quantification of
mammalian gene expression control. Nature 473:337–42

50. Schmidt A, Beck M, Malmström J, Lam H, Claassen M, et al. 2011. Absolute quantification of microbial
proteomes at different states by directed mass spectrometry. Mol. Syst. Biol. 7:510

51. Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists
using DAVID bioinformatics resources. Nat. Protoc. 4:44–57

52. Ma’ayan A. 2008. Network integration and graph analysis in mammalian molecular systems biology.
IET Syst. Biol. 2:206–21

53. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, et al. 2010. Visualization of omics
data for systems biology. Nat. Methods 7:S56–68

54. Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10:669–80
55. Suter B, Kittanakom S, Stagljar I. 2008. Two-hybrid technologies in proteomics research. Curr. Opin.

Biotechnol. 19:316–23
56. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. 2001. Integrated genomic and proteomic

analyses of a systematically perturbed metabolic network. Science 292:929–34
57. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, et al. 2008. High-quality binary protein

interaction map of the yeast interactome network. Science 322:104–10
58. Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, et al. 2010. Rewiring of genetic networks in

response to DNA damage. Science 330:1385–89
59. Butter F, Scheibe M, Morl M, Mann M. 2009. Unbiased RNA-protein interaction screen by quantitative

proteomics. Proc. Natl. Acad. Sci. USA 106:10626–31
60. Bantscheff M, Scholten A, Heck AJ. 2009. Revealing promiscuous drug-target interactions by chemical

proteomics. Drug Discov. Today 14:1021–29
61. Rix U, Superti-Furga G. 2009. Target profiling of small molecules by chemical proteomics. Nat. Chem.

Biol. 5:616–24
62. Li X, Gianoulis TA, Yip KY, Gerstein M, Snyder M. 2010. Extensive in vivo metabolite-protein inter-

actions revealed by large-scale systematic analyses. Cell 143:639–50
63. Gingras AC, Gstaiger M, Raught B, Aebersold R. 2007. Analysis of protein complexes using mass

spectrometry. Nat. Rev. Mol. Cell Biol. 8:645–54
64. Sharon M, Robinson CV. 2007. The role of mass spectrometry in structure elucidation of dynamic

protein complexes. Annu. Rev. Biochem. 76:167–93
65. Heck AJ. 2008. Native mass spectrometry: a bridge between interactomics and structural biology.

Nat. Methods 5:927–33
66. Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, et al. 2010. Probing native protein structures

by chemical cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics 9:1634–49
67. Sigal A, Danon T, Cohen A, Milo R, Geva-Zatorsky N, et al. 2007. Generation of a fluorescently labeled

endogenous protein library in living human cells. Nat. Protoc. 2:1515–27
68. de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, et al. 2003. Efficient biotinylation

and single-step purification of tagged transcription factors in mammalian cells and transgenic mice.
Proc. Natl. Acad. Sci. USA 100:7480–85

69. Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, et al. 2010. Quantitative proteomics combined
with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189:739–54

www.annualreviews.org • Mass Spectrometry–Based Proteomics 401

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
2.

81
:3

79
-4

05
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 N

ew
 Y

or
k 

U
ni

ve
rs

ity
 -

 B
ob

st
 L

ib
ra

ry
 o

n 
01

/2
3/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



BI81CH16-Aebersold ARI 3 May 2012 10:36

70. Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, et al. 2011. Analysis of the human endogenous
coregulator complexome. Cell 145:787–99

71. Boulon S, Ahmad Y, Trinkle-Mulcahy L, Verheggen C, Cobley A, et al. 2010. Establishment of a protein
frequency library and its application in the reliable identification of specific protein interaction partners.
Mol. Cell. Proteomics 9:861–79

72. Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert FM, et al. 2008. Identifying specific protein
interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183:223–39
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