Proteomics Informatics – Protein characterization: post-translational modifications and protein-protein interactions (Week 10)

Charge distribution

Isotope distribution

Fragmentation

Correlations between modifications

Bottom up

Alternative Splicing

Top down

Protein Complexes

Protein Complexes - specific/non-specific binding

E	Stats Table					
-	Bait 1	Bait 2	Bait 3	Bait 4	Bait <i>k</i>	_
Interactor 1	X _{1,1}	X _{2,1}	X _{3,1}	X _{4,1}	$X_{k,1}$	\overline{X}_1
Interactor 2	X _{1,2}	X _{2,2}	X _{3,2}	X _{4,2}	$X_{k,2}$	\overline{X}_2
Interactor 3	X _{1,3}	X _{2,3}	X _{3,3}	X _{4,3}	$X_{k,3}$:
Interactor 4	X _{1,4}	X _{2,4}	X _{3,4}	X _{4,4}	$X_{k,4}$:
Interactor m	X _{1,m}	$X_{2,m}$	$X_{3,m}$	$X_{4,m}$	$X_{k,m}$	\overline{X}_m

 $X_{i,j}$ = total spectral counts for interactor *j* from bait *i*

$$\overline{X}_{j} = \frac{\sum_{i=1, j=n}^{i=k} X_{i,j}}{k}$$
; $n = 1, 2, ..., m$ (Eq. 1)

$$z_{i,j} = \frac{X_{i,j} - \overline{X}_j}{\sigma_j}$$
 (Eq. 2)

$$f_{i,j} = \begin{cases} 1 ; X_{i,j} > 0 \\ X_{i,j} \end{cases} \quad p = \begin{cases} \text{number of replicates} \\ \text{runs in which} \\ \text{the interactor is present} \end{cases}$$

$$\mathsf{D}_{i,j}^{\mathsf{R}} = -\sqrt{\left(\frac{k}{\sum\limits_{i=1}^{i=k} f_{i,j}}\right)^{p}} \mathsf{X}_{i,j} \qquad (\mathsf{Eq. 3})$$

Protein Complexes - specific/non-specific binding

Protein Complexes - specific/non-specific binding

Tackett et al. JPR 2005

Analysis of Non-Covalent Protein Complexes

Taverner et al., Acc Chem Res 2008

Non-Covalent Protein Complexes

Affinity Capture Optimization Screen

LaCava, Hakhverdyan, Domanski, Rout

Molecular Architecture of the NPC

Cloning nanobodies for GFP pullouts

- Atypical heavy chain-only IgG antibody produced in camelid family retain high affinity for antigen without light chain
- Aimed to clone individual single-domain VHH antibodies against GFP only ~15 kDa, can be recombinantly expressed, used as bait for pullouts, etc.
- To identify full repertoire, will identify GFP binders through combination of high-throughput DNA sequencing and mass spectrometry

Cloning llamabodies for GFP pullouts

Identifying full-length sequences from peptides

Underlined regions are covered by MS

CDR1

CDR3

CDR3: 100.0% (14/14); combined CDR: 100.0% (33/33); DNA count: 10 MAQVQLVESGGGLVQAGGSLRLSCVASGRTFSGYAMGWFRQTPGREREAVAAITWSAHSTYYSDSVKDRFTISIDNTRNTGYLQMNSLKPEDTAVYYCTVRHGTWFTTSRYWTDWGQGTQVTVS

CDR2

CDR3: 100.0% (14/14); combined CDR: 72.7% (24/33); DNA count: 1 MAQVQLVESGGALVQAGASLSVSCAASGGTISKYNMAWFRAPGRER<u>EAVAAITWSAHSTYYSDSVK</u>DR<u>FTISIDNTRNTGYLQMNSLKPEDTAVYYCTVRHGTWFTTSRYWTDWGQGTQVTVS</u>

CDR3: 100.0% (14/14); combined CDR: 72.7% (24/33; DNA count: 1 MADVQLVESGGGLVQSGGSRTLSCAASGRVLATYHLGWFRQSPGRER<u>EAVAAITWSAHSTYYSDSVK</u>GR<u>FTISIDNARNTGYLQMNSLKPEDTAVYYCTVRHGTWFTVSRYWTDWGQGTQVTVS</u>

CDR3: 100.0% (14/14); combined CDR: 42.4% (14/33); DNA count: 1 MAQVQLEESGGGLVQAGDSLTLSCSASGRTFTNYAMAWSRQAPGKERELLAAIDAAGGATYYSDSVKGR<u>FTISIDNTRNTGYLQMNSLKPEDTAVYYCTVRHGTWFTTSRYWTDWGQGTQVTVS</u>

CDR3: 100.0% (14/14); combined CDR: 42.4% (14/33); DNA count: 1 MAQVQLVESGGGRVQAGGSLTLSCVGSEGIFWNHVMGWFRQSPGKDREFVARISKIGGTTNYADSVKGR<u>FTISIDNTRNTGYLQMNSLKPEDTAVYYCTVRHGTWFTTSRYWTDWGQGTQVTVS</u>

Rank sequences according to: CDR3 coverage; Overall coverage; Combined CDR coverage; DNA counts;

Sequence diversity of 26 verified anti-GFP nanobodies

- Of ~200 positive sequence hits, 44 high confidence clones were synthesized and tested for expression and GFP binding: 26 were confirmed GFP binders.
- Sequences have characteristic conserved VHH residues, but significant diversity in CDR regions.

	FR1	CDR1	FR2	CDR2	FF	R3	CDR3	FR4
	1 10 20	3 Q 4	o 5 o	еò	70. 80	90	100 110	120
00000000000000000000000000000000000000	MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRVSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGRVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGGSLRLSC MAQVQLVE SGGGLVQAGSLRLSC MAQVQLVE SGGGLVQAGALLSC MAQVQLVE SGGGLVQAGSLRLSC MAQVQLVE SGGGLVQAGSLRLSC MAQVQLVE SGGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRLSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGGLVQAGSLRSC MAQVQLVE SGQLVQAGSLRSC MAQVQLVE SGGLVQAGSLLSC MAQVQLVE SGQLVQAGAZ MAQVQLVE SGQLVZ MAQVQLVE SGGLVQAGAZ MAQVQLVE SGQLVZ MAQVQLVE SGQLVQAGZ MAQVQLVE SGQLVZ MAQVQLVE SGQLVZ MAQVQLVE SGQLVQAGZ MAQVQLVE SGQLVZ MAQVQLVE SGQLVZ MAQVQLVZ MAQVQLVE SGQLVZ MAQVQLVZ MAX	AASGRTFSNYAMGWF AASGRTFSDYAMGWF AASGRTFSTSSMAWF VASGRTFSTSSMAWF VASGRTFSTSSMAWF ASGRTFSTSAMGWF AASGRTFSTSAMGWF AASGRTFSTSAMGWF AASGRTFSSTSAMGWF AASGRTFSSTSAMGWF AASGRTFSTSAMGWF AASGRTFSTSAMGWF AASGRTSSYMAWF AASGRTSSYMAWF AASGRTSSYMAWF AASGPTGAMAWF AASGEIASIIAIGWF AASGEITSSYMIGWF AASGEITSSYMIGWF AASGETTSSTYMIGWF	ROAPGKEREFV ROAPGKEREFA ROAPGKEREFA ROAPGKEREFU ROAPGKEREFU ROAPGKEREFU ROAPGKEREFU ROAPGKEREFV	AAISWTGVSTYYA AGISGSGDTYYA AGITWISSSTYY AAITWSAHSTYYS ARISKSGDITYA ARITWSAHSTYYS GGISRSGATTYYA AAITWSAGYTAYS GGISRSGATTYYA AGISRSGGTTYYA AGISRSGGTTYYA AGISRSGSTTYYA GGISRSGSTTYYA GGISRSGSTTYYA GGISRSGSTTYYA GGISRSGGSTYYA GGISRSGGTYYA GGISRSGGTYYA AJITRSGESTFYA AJIRSGGSTTYYA AJIRSGGGTYAA	DSVKGRFTISRDNDKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNTKNT DSVKGRFTISIDNTKNT DSVKGRFTISIDNTKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDNAKNT DSVKGRFTISRDAKNT DSVKGRFTISRDAKNT DSVKGRFTISRDAKNT DSVKGRFTISRDAKNT DSVKGRFTISRDAKNT DSVKGRFTISRDNAKNT	VYVQMNSLIPEDTAIY MYLQMNSLKPEDTAVYF VYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YULQMNSLKPEDTAVYY 'YULQMNSLKPEDTAVYY 'YULQMNSLKPEDTAVYY 'YULQMNSLKPEDTAVYY 'YULQMNSLKPEDTAVYY 'YULQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSLKPEDTAVYY 'YYLQMNSVKPADAAVYS 'YYLQMNSVKPADAVYY	CAAVRARSFSDTYSRVNE CAARTGTVLFTSRVD CAAKSEGYFG.FPRVENE CTVRHGTWFTTSRY CAATLRATITSFDE CTVRHGTWFTTSRY CAATLRATITSFDE CASRSAGYSSSLTRRED. CASRSAGYSSSLTRRED. CAARNNILPVTTIDK CAVRTSGFFGSIPVTERA CALRRGGVYNTYSGEKD CAARARGW.TTFPAREIE CSARSRGYVLSVLSVLSVDS CAVRTSGFFGSIPRTGTA CAQRVRGFFGSIPRTGTA CAQRVRGFFGPLRSTPSW CAARRSQLLFTSRTD CAARRRVTLFTSRAD CAARRRDWYSSAFRE CGATVRAGAAAEQYNS CAACLRDWGREGE	YD YWG0GTQVTV YRYWG0GTQVTV YPYWG0GTQVTV WTDWG0GTQVTV WTDWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDYWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV YDFWG0GTQVTV
35p 37p 41p 42p	MADVQLVE.SGGGLVQAGGSLRLSC MAQVQFVE.SGGGLVQAGGSLRLSC MADVQLVE.SGGGLVQAGGSLRLSC MADVQLVE.SGGGLVQAGDSLRLSC	TVSGRTFSNYAMGWF TASGDTFSNYHAGWF AASGPTGAMAWF	ROAPGKEREFV ROPPGREREFV ROAPGKEREFV HOGLGKEREFV	AGISWTGGHTLYT AAISWTGEGTLYA GGISGSETDTYYV GGISPSGDNIYYA	DSVKGRFTISRDNAKNT DSVKGQFTISRDNAKNA DSVKGRFTVDRDNVKNT DSVKGRFTIDRDNAKNT	VYLQMNSLKPEDTALYY MYLQMNRLKPEDTAVYY VYLQMNSLKPEDTAVYY VSLQMNSLKPEDMGVYY	CAADRAADFFAQRDE CAARSVGFTWRSSKSND CAARRRITLFTSRTD CAARRRVTLFTSRTD	YDYWGQGTQVTV YAYWGQGTQVTV YDFWGRGTQVTV YEFWGRGTQVTV

HIV-1

Genetic-Proteomic Approach

I-Dirt for Specific Interaction

I-DIRT = Isotopic Differentiation of Interactions as Random or Targeted

IDIRT and Reverse **IDIRT**

Env-3xFLAG

Vif-3xFLAG

Luo, Jacobs, Greco, Cristae, Muesing, Chait, Rout

Protein Exchange

Env Time Course SILAC

- Differentially labeled infection harvested at early or late stage of infection
- Distinguish proteins that interact with Env at early or late stage during infection

M/Z

Cross-linking

Protein Crosslinking by Formaldehyde

Example Traditional Formaldehyde Cross-linking:

Protein Crosslinking by Formaldehyde

RED: triplicate experiments, FAI treated grindate **BLACK:** duplicated experiments, FAI treated cells (then ground)

SCORE: Log Ion Current / Log protein abundance

Akgöl, LaCava, Rout

Cross-linking

Mass spectrometers have a limited dynamic range and it therefore important to limit the number of possible reactions not to dilute the cross-linked peptides.

For identification of a cross-linked peptide pair, both peptides have to be sufficiently long and required to give informative fragmentation.

High mass accuracy MS/MS is recommended because the spectrum will be a mixture of fragment ions from two peptides.

Because the cross-linked peptides are often large, CAD is not ideal, but instead ETD is recommended.

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$ Phosphorylation

 $\Delta \dot{m}_{precursor} = 1 Da$ $\Delta m_{fragment} = 0.5 Da$ Phosphorylation

Visualization of evidence for localization

Visualization of evidence for localization

Rank	AAYYQK	Total (matched)	Difference (matched)
1	A AY YQK	8	-
2	AA Y <mark>O</mark> QK	6	2 0

Rank	AAYYQK	Total (intensity)	Difference (intensity)
1	A AY YQK	0.809	-
2	AA Y Q K	0.735	■ 0.074 0

Visualization of evidence for localization

Rank	AAVPSGASTGIYEALELR	Total (matched)	Difference (matched)
1	AAVPSGASTG	— 15	-
2	AAVPSGAS T GIYEALELR	14	■ 3 ■ 2
3	AAVPSGASTGIYEALELR	13	4 2

Rank	AAVPSGASTGIYEALELR	Total (intensity)	Difference (intensity)
1	AAVPSGAS	0.315	-
2	AAVPSGASTGIYEALELR	0.29	I 0.025 I 0
3	AAVPSGASTG YE ALELR	0.187	■ 0.167 ∎ 0.039

Estimation of global false localization rate using decoy sites

By counting how many times the phosphorylation is localized to amino acids that can not be phosphorylated we can estimate the false localization rate as a function of amino acid frequency.

How much can we trust a single localization assignment?

If we can generate the distribution of scores for assignment 1 when 2 is the correct assignment, it is possible to estimate the probability of obtaining a certain score by chance for a given peptide sequence and MS/MS spectrum assignment.

Is it a mixture or not?

If we can generate the distribution of scores for assignment 2 when 1 is the correct assignment, it is possible to estimate the probability of obtaining a certain score by chance for a given peptide sequence and MS/MS spectrum assignment.

Proteomics Informatics – Protein characterization: post-translational modifications and protein-protein interactions (Week 10)