Proteomics Informatics – Protein identification I: searching protein sequence collections and significance testing (Week 4)

Peptide Mapping - Mass Accuracy

Identification - Peptide Mass Fingerprinting

ProFound Results

Protein Candidates

Rank	Expectation	Protein Information and Sequence Analyse Tools (T)	%	pI	kDa
+1	5.110 ^{-7,}	gi 148236543 ref NP_001081565.1 serine/threonine- protein kinase 6-A [Xenopus laevis]	36	9.6	46.35
+2	0.057	gi 213626249 gb AAI70128.1 Unknown (protein for MGC:196855) [Xenopus laevis]	8	5.3	147.73
3	0.094	gi 147905824 ref NP_001086865.1 WD repeat- containing protein 67 [Xenopus laevis]	9	7.5	126.81

Database size

Mixtures

Peptide Fragmentation

Amino acid masses

1-letter	3-letter	Chemical	Monois	Average	
code	code	formula	otopic	Average	
А	Ala	C_3H_5ON	71.0371	71.0788	
R	Arg	$C_6H_{12}ON_4$	156.101	156.188	
Ν	Asn	$C_4H_6O_2N_2$	114.043	114.104	
D	Asp	$C_4H_5O_3N$	115.027	115.089	
С	Cys	C_3H_5ONS	103.009	103.139	
E	Glu	$C_5H_7O_3N$	129.043	129.116	
Q	Gln	$C_5H_8O_2N_2$	128.059	128.131	
G	Gly	C_2H_3ON	57.0215	57.0519	
Н	His	$C_6H_7ON_3$	137.059	137.141	
Ι	lle	$C_6H_{11}ON$	113.084	113.159	
L	Leu	$C_6H_{11}ON$	113.084	113.159	
К	Lys	$C_6H_{12}ON_2$	128.095	128.174	
М	Met	C₅H ₉ ONS	131.04	131.193	
F	Phe	C ₉ H ₉ ON	147.068	147.177	
Р	Pro	C₅H ₇ ON	97.0528	97.1167	
S	Ser	$C_3H_5O_2N$	87.032	87.0782	
Т	Thr	$C_4H_7O_2N$	101.048	101.105	
W	Trp	$C_{11}H_{10}ON_2$	186.079	186.213	
Y	Tyr	$C_9H_9O_2N$	163.063	163.176	
V	Val	C₅H ₉ ON	99.0684	99.1326	

	260	292	389	405	504	534	633	663	762	778	875	907	1020	1022	1079
260		32	129	145	244	274	373	403	502	518	615	647	760	762	819
292			97	113	212	242	341	371	470	486	583	615	728	730	787
389				16	115	145	244	274	373	389	486	518	631	633	690
405					99	129	228	258	357	373	470	502	615	617	674
504						30	129	159	258	274	371	403	516	518	575
534							99	129	228	244	341	373	486	488	545
633								30	129	145	242	274	387	389	446
663									99	115	212	244	357	359	416
762										16	113	145	258	260	317
778											97	129	242	244	301
875												32	145	147	204
907													113	115	172
1020														2	59
1022															57

	260	292	389	405	504	534	633	663	762	778	875	907	1020	1022	1079
260		32	129	145	244	274	373	403	502	518	615	647	760	762	819
292			97	113	212	242	341	371	470	486	583	615	728	730	787
389				16	115	145	244	274	373	389	486	518	631	633	690
405					99	129	228	258	357	373	470	502	615	617	674
504						30	129	159	258	274	371	403	516	518	575
534							99	129	228	244	341	373	486	488	545
633								30	129	145	242	274	387	389	446
663									99	115	212	244	357	359	416
762										16	113	145	258	260	317
778											97	129	242	244	301
875												32	145	147	204
907													113	115	172
1020														2	59
1022															57

		260	292	389	405	504	534	633	663	762	778	875	907	1020	1022	1079
\rightarrow	260		32	E	145	244	274	373	403	502	518	615	647	760	762	819
\rightarrow	292			X		212	242	341	371	470	486	583	615	728	730	787
\rightarrow	389				16	D	145	244	274	373	389	486	518	631	633	690
\rightarrow	405						E	228	258	357	373	470	502	615	617	674
\rightarrow	504						30	E	159	258	274	371	403	516	518	575
\rightarrow	534								E	228	244	341	373	486	488	545
\rightarrow	633								30	E	145	242	274	387	389	446
\rightarrow	663		SG	GF(I/	L)EE	EDE	(I/L)				D	212	244	357	359	416
\rightarrow	762		1166	5 — 1	020	- 18	3 =	128			16		145	258	260	317
\rightarrow	778			=	⇒K ɗ	or Q						X	E	242	244	301
\rightarrow	875		SGF	(I/L)	EEC	DE(I/	′L)(K	(/Q)					32	145	F	204
\rightarrow	907															172
\rightarrow	1020														2	59
\rightarrow	1022															G

Challenges in de novo sequencing

Neutral loss $(-H_2O, -NH_3)$

Modifications

Background peaks

Incomplete information

Tandem MS - Database Search

Search Results

1 match for *GPM33080001549*, Display: model 🗷 | metadata 🗷 | group 🗷 | peptide 🗷 | aaa 🗷 | gel | GO | BTO | path | snaps | mh | ζ | wiki

BRENDA cell culture: none BRENDA tissue: none CELL cell type: none GO subcellular: none institution: University of Toronto name: Kislinger Lab project: In-depth Proteomic Analyses of Direct Expressed Prostatic Secretions project comment: Prostatic secretion 4, Tranche 🌳 Fluids that are proximal to organs contain a repertoire of secreted proteins and shed cells reflective of the physiological state of that tissue, and thus represent potential sources for biomarker discovery and investigation of tissue-specific biology. Proximal fluids of the prostate are seminal plasma and expressed prostatic secretions (EPS). MudPIT-based proteomics was applied to EPS obtained from men with prostate cancer and resulted in the identification of 916 proteins. J. Prot. Res. DOI 10.1021/pr1001498 (PubMed).

Best models for GPM33080001549 Show all , or display as hgnc 🚽 go

#	log(e)	accession	coverage	
1.	-2281.6	ALB		[31/13757]
2.	-2207.4	ALB		[12/10080]
3.	-1574	FCGBP		[1/1066]
4.	-1139.5	ACPP		[3/325]
5.	-1078.5	LTF		[5/2428]
6.	-1041.1	KLK3		[4/217]
7.	-760.5	TGM4		[0/68]
8.	-699.4	ANPEP		[9/958]
9.	-695.5	TF		[85/5619]
10.	-684.4	AZGP1		[3/2526]

False protein identification is caused by random matching

The majority of sequences in a collection will give a score due to random matching.

List of Candidates With Expectation Values

Rho-diagrams: Overall Quality of a Data Set

Expectation values as a function of score for random matching: $e(s) \propto \exp(-\beta s)$

Definition: E_i (i=0,-1,-2,...) is the number of spectra that has been assigned an expectation value between exp(i) and exp(i-1). For random matching:

$$E_{i} = \int_{e=\exp(i-1)}^{e=\exp(i)} Nde = N\{\exp(i) - \exp(i-1)\}$$

$$\rho(i) = \log(\frac{E_i}{E_0}) = \log(\frac{N\exp(i)\{1 - \exp(-1)\}}{N\{1 - \exp(-1)\}}) = -i$$

Rho-diagram Random Matching

log(e)

Rho-diagram Data Quality

log(e)

Rho-diagram Parameters

To identify an unmodified peptide?

To identify a modified peptide?

To localize a modification on a peptide?

How does it depend on different parameters?

- Precursor mass
- Precursor mass error
- Fragment mass error
- Background peaks

Critical number of fragment masses

Small peptides are slightly more difficult to identify

 $\Delta m_{precursor} = 1 Da$ $\Delta m_{fragment} = 0.5 Da$ No modification

A lower precursor mass error requires fewer fragment masses for identification of unmodified peptides

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$ No modification

The dependence on the fragment mass error is weak below a threshold for identification of unmodified peptides

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ No modification

A moderate number of background peaks can be tolerated when identifying unmodified peptides

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$ No modification

A large number of background peaks can be tolerated if the fragment mass is accurate

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.01 \text{ Da}$ No modification

Identification of phosphopeptides is only slightly more difficult

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$

Proteomics Informatics – Protein identification I: searching protein sequence collections and significance testing (Week 4)