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Improving the success rate of proteome 
analysis by modeling protein-abundance 
distributions and experimental designs
Jan Eriksson1,3 & David Fenyö2,3

Truly comprehensive proteome analysis is highly desirable in 
systems biology and biomarker discovery efforts. But complete 
proteome characterization has been hindered by the dynamic 
range and detection sensitivity of experimental designs, which 
are not adequate to the very wide range of protein abundances. 
Experimental designs for comprehensive analytical efforts 
involve separation followed by mass spectrometry–based 
identification of digested proteins. Because results are generally 
reported as a collection of identifications with no information on 
the fraction of the proteome that was missed, they are difficult 
to evaluate and potentially misleading. Here we address this 
problem by taking a holistic view of the experimental design 
and using computer simulations to estimate the success rate for 
any given experiment. Our approach demonstrates that simple 
changes in typical experimental designs can enhance the 
success rate of proteome analysis by five- to tenfold.

Experimental design is critical for the success of a proteomics experi-
ment. A good design must handle the complexity and the very wide 
range of protein abundances. Global abundance measurements in 
Saccharomyces cerevisiae—using an antibody against a tag engineered 
into S. cerevisiae genes, followed by quantitative western blot analy-
sis—have revealed a bell-shaped distribution of proteins spanning 
about six orders of magnitude in abundance1. Estimates for body 
fluids indicate much larger ranges of protein abundances (1010 or 
higher)2, with a distribution that is still unknown. In contrast, the 
dynamic range of experimental methods typically used in proteomics 
spans only a few orders of magnitude, hampering the identification 
of low-abundance proteins. State-of-the-art experimental designs in 
proteomics involve3 (i) taking samples of proteins relevant to the 
biological hypothesis or phenomenon explored; (ii) protein sepa-
ration by liquid chromatography (LC) and/or gel electrophoresis4; 
(iii) protein digestion using an enzyme of high specificity, followed by 
chromatographic5 or electrophoretic separation6 and mass spectro-
metric (MS) analysis7 of the proteolytic peptides; and (iv) searching 

a protein-sequence collection to identify proteins based on the MS 
and tandem MS (MS/MS) information8,9. The numerous choices 
available for each step in the workflow make it prohibitive to fully 
optimize the design of the workflow experimentally. To address this 
issue, we have developed a simulation tool for evaluating the suc-
cess of current designs and for predicting the performance of future, 
further optimized proteomics experimental designs. The simulation 
takes a holistic view of a general analytical experiment and aims at 
identifying pertinent factors that influence the success rate. Here, we 
assess the performance of this approach for predicting the success of 
proteome analyses of human tissue and body fluid that use various 
state-of-the-art experimental design principles.

The model of the common major steps of a proteomics experi-
ment, including separation of proteins and peptides, is shown in 
Figure 1a. Several parameters are required to simulate the steps of 
a proteome analysis: (i) the distribution of protein amounts in the 
sample analyzed; (ii) the loss of analyte material and the maximal 
limit of the amount loaded in each step of sample manipulation 
(separation, digestion, chemical modification and so forth); (iii) the 
dynamic range, the detection limit and the losses associated with MS 
analysis. Depending on what experiment is modeled the detection 
limit employed in a simulation can represent either protein identifica-
tion only (lower limit of identification) or protein identification with 
quantification (lower limit of quantification).

We have defined and studied two quantities as a function of the 
model parameters: the success rate (Fig. 1b) and the relative dynamic 
range (RDR; Fig. 1c). The success rate is simply the ratio between the 
number of distinct proteins detected (or quantified) and the total num-
ber of distinct proteins in the sample. The quantity RDR is defined as 
the ratio between the logarithm of the range of abundances of proteins 
detected (or quantified) and the logarithm of the entire range of pro-
tein abundances of a proteome. Hence, RDR is a measure of how far 
down in protein abundance we can reach for a given proteome. The 
success rate and RDR provide key pieces of information that so far have 
been neglected when reporting proteome analysis results. Appropriate 
assignment of the success rate and RDR for a proteomics study can sim-
plify evaluation and prevent a misleading interpretation of results.

We demonstrate that modeling and simulation can teach us how 
to improve an experimental design with a low success rate and low 
RDR (Fig. 2a,b, I). In this experimental design, a complex mixture 
of proteins from a tissue or body fluid sample are digested without
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prior protein separation. The resulting proteolytic peptides are sepa-
rated by reversed-phase chromatography (RPC) using a nanobore col-
umn (≈75 µm internal diameter (i.d.)) before MS analysis. Potential 
improvement of this experimental design is demonstrated by vary-
ing three fundamental experimental design parameters: the degree 
of protein separation, the amount of peptides loaded on the RPC 
column and the degree of peptide separation. The explicit effect of 
each respective fundamental design parameter is elucidated by assum-
ing that losses are independent of other parameters.

Protein separation improves the success rate and extends the RDR 
of the experiment, and most proteins can be detected when extensive 
protein separation is performed (Fig. 2a,b). However, the drawbacks 
of extensive protein separation include: longer analysis time, larger 
protein losses and a requirement for larger sample amounts (provided 
that the same amount of proteolytic peptides is loaded on the column 
for each protein fraction).

Increasing the amount of peptides loaded on the RPC column 
improves the success rate and the RDR (Fig. 2c,d). Unfortunately, 
many experimental designs are not focused on maximizing the 
amount of peptides loaded on the RPC column but are instead focused 
on minimizing sample handling and losses. For example, the popular 
nanobore columns allow flow rates that are suitable for online MS, 
but these narrow columns severely limit the amount of material that 
can be analyzed (maximum amount loaded ∝ i.d.2). An alternative 
strategy to increasing the amount of peptides would be to improve 
the detection sensitivity of the mass spectrometer (Supplementary 
Fig. 1 online).

Finally, improving the peptide separation leads to an additional 
increase in the success rate and the RDR (Fig. 2e,f). An alternative 
strategy to improve peptide separation would be enhancement of 
the dynamic range of the mass spectrometer (Supplementary Fig. 2 
online).

The combined effect of these improvements—limited protein sepa-
ration, analyzing more material and better peptide separation—leads 
to an experimental design that can be used to sample a large portion 
of the proteins in tissue. In contrast, for the wider range of protein 
abundances of body-fluid samples, this experimental design fails to 
analyze anything but the most abundant proteins.

The relative increases in the success rate and RDR shown in Figure 2 
are obtained by improving protein separation, increasing the amount 
of peptides loaded on the column, and improving the peptide separa-
tion (I–IV). The impact on the success rate and RDR of each respec-
tive design parameter is dependent on the other design parameters. 
For example, the effect of improving the peptide separation with and 
without loading more material on the column employed for separat-
ing the proteolytic peptides is dramatically different (Fig. 3). The 
enhanced peptide separation per se does not lead to an improvement 
of the success rate and RDR (Fig. 3, II, III) unless the amount loaded 
on the column is increased (Fig. 3, III, IV).

The examples of Figures 2 and 3 display the effects of changing the 
parameters related to peptide separation for a fixed level of protein 
separation. The effects of changing the parameters related to peptide 
separation for different levels of protein separation are displayed in 
Supplementary Figures 3 and 4 online.

We conclude that the factor limiting the success of many pro-
teomics experiments is the amount of material analyzed—often 
because experimental designs include a nanobore-column or because 
the detection limit of current mass spectrometers is too poor. The 
effect of this limiting factor is reduced when two dimensions are 
used for the peptide separation, but the improvement is hampered 
by the increased losses associated with the additional separation step 
(Supplementary Fig. 5 online).

In Figures 2 and 3 losses are modeled as being independent of 
other parameters, and the amount of peptide material analyzed is 
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Figure 1  The proteomics workflow modeled 
and definitions of success rate and relative 
dynamic range, RDR. (a) Workflow model used for 
simulating proteome analysis. A protein sample is 
taken from an organism. The protein-abundance 
distribution is modeled according to the organism 
and type of sample (e.g., tissue or body fluid). 
The proteins are separated into fractions and each 
fraction is digested with a proteolytic enzyme of 
high specificity (typically trypsin). Each digested 
fraction is then subjected to peptide separation. 
The separated peptides are subjected to mass 
spectrometric analysis. In the simulations, two 
quantities—success rate and RDR—are studied 
as a function of experimental design. (b) The 
success rate of a proteomics experiment is the 
ratio between the area under the distribution 
of detected proteins and the area under the 
protein-abundance distribution of the proteome 
investigated. Alternatively, when the abundance 
distribution is unknown, the success rate can 
be calculated simply as the number of distinct 
proteins identified divided by the total number of 
distinct proteins in the proteome. The number of 
proteins in an organism is defined as the number 
of genes plus known splicing variants. (c) The 
relative dynamic range RDRx is the logarithm 
value of the range of abundances where at least 
x% of the proteins are detected divided by the logarithm value of the entire range of protein abundances in the proteome studied. RDRx is a measure of how 
far down in protein abundance we can reach for a given proteomic experiment. The relative dynamic range and the success rate provide appropriate measures 
of what fraction of the proteome an analysis is detecting and what fraction is missing due to experimental imperfection.
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varied over a wide range. This is straightforward to implement experi-
mentally if the MS analysis is performed off-line, which allows, for 
example, the peptide amount to be increased by using a larger bore 
column. For online analysis it is less straightforward to load more 
material. The ideal flow rate and the maximum amount loaded scale 
in the same way with column i.d., thereby keeping the concentration 
of eluting peptides constant and cancelling the effect of loading more 
material. However, a gain in RDR and success rate for online experi-
ments can still be obtained by improving the detection limit.

Another consideration in online MS is that a finite limit of the 
rate of data acquisition (sampling) yields losses that depend on the 
complexity of the sample analyzed. The finite rate of acquisition will 
lead to losses of proteins that are detectable (according to the detec-
tion sensitivity and dynamic range). The effect of sampling losses can 
be modeled and is demonstrated in Supplementary Figure 6 online, 

where it is seen that when the acquisition rate is limiting, improved 
separation yields detection of a larger number of high-abundance 
proteins and therefore improves the success rate but not the RDR. An 
alternative way to partially overcome sampling losses is to perform 
repeated online analysis. The repeated analysis will yield a higher 
overall success rate than a single experiment (Supplementary Fig. 7 
online), but with negligible impact on RDR.

Much method development in proteomics has been focused on 
improving peptide separation in online experiments to improve detec-
tion of low-abundance proteins. Contrary to this belief, the model-
ing and simulations indicate that improving RDR is not possible by 
improving the peptide separation alone. We validated this finding 
experimentally. Whole-cell lysate of S. cerevisiae was proteolytically 
digested, and the resulting peptide mixture was analyzed by LC-
MS/MS using different degrees of separation (two different gradient
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Figure 2  Simulations of proteome analysis of Homo sapiens. (a–f) Relative dynamic range, RDR30, as a function of experimental design parameters (a,c,e). 
Success rate as a function of experimental design parameters (b,d,f). (g–n) The distributions of protein abundances (black) and the distributions of detected 
proteins (blue for tissue and red for body fluid) for selected experimental design parameter sets (I–IV). In the first selected experimental design parameter 
set (I) the sample contains 30,000 proteins (no protein separation) and the proteolytic peptides are separated into 100 fractions with an RPC column loaded 
with 0.1 µg of peptides. The influence of different degrees of protein separation is shown in a and b. It is seen that a change from a design that analyzes 
digests of 30,000 proteins (I), to a design that analyzes digests of 3,000 proteins (II) yields a valuable improvement of the RDR30 (a) and the success 
rate (b). The effect of increasing the amount of peptides loaded onto the column is shown in c and d. Important gains in the RDR30 (c) and the success rate 
(d) are obtained by increasing the amount loaded from 0.1 µg (II) to 10 µg (III). The effect of improving the peptide separation is shown in e and f. As the 
peptide separation is enhanced from yielding 100 fractions (III) to 1,000 fractions (IV) a substantial fraction of the human tissue proteome can be detected, 
whereas the detection from the body fluid still displays only moderate success. Based on the measurements on yeast in Ref. 1, we assumed that the shape 
of the protein-abundance distributions is Gaussian (σ = 0.6) for tissue and semi-Gaussian (σ = 1.2) for body fluid ranging six and twelve orders of magnitude 
(±5σ), respectively. The semi-Gaussian distribution takes into account that many different proteins can be secreted in low amounts into a body fluid. The 
total and pre-column survival probabilities were 10% and 90%, respectively. The MS detection sensitivity was 1 fmol and the MS dynamic range was 102.
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lengths) and with a fixed low amount of material loaded on the RPC 
column. The results from these experiments show that improving the 
separation increases the success rate but has no influence on RDR 
(Supplementary Fig. 8a,b online). Repeated online analysis is an 
alternative strategy for improving the success rate, but again there 
is no improvement of RDR (Supplementary Fig. 8c,d). The gain in 
success rate when improving the separation or repeating the analysis 
is entirely due to reduced sampling losses of high-abundance proteins, 
whereas low-abundance proteins remain undetected—in agreement 
with the simulation results (Supplementary Figs. 6 and 7).

Our results clearly show that to reach both a high RDR and a high 
success rate some protein separation should be performed even at the 
expense of analysis time. After one has settled on a level of protein 
separation, the focus should be to find out how to analyze more mate-
rial or alternatively improve the detection sensitivity of the mass spec-
trometer—depending on whether the MS analysis will be performed 
off-line or online. Only after this has been done should the focus be 
on improving the peptide separation or, alternatively, the dynamic 
range of the mass spectrometer. Even slight modifications of common 
proteomics techniques can raise the success rate for proteome analysis 
of human tissue from 1–10% up to 50–70%.

Computer simulations are ideal for optimizing experimental designs 
and identifying bottlenecks, because a large parameter space can be 
investigated even with modest computational resources. The exact val-
ues of many of the parameters needed to describe the experiment are 
uncertain, including the losses of proteins and peptides as they travel 
through the system. By investigating a wide range of parameters (e.g., 
protein-abundance distributions, losses of peptides and separation 
models), we have shown that the identification of bottlenecks and the 
general trends of influences on the performance of various experi-
mental designs are not very sensitive to the precise values of the design 
parameters (Supplementary Figs. 1–5 and 9–14 online).

We foresee that in the near future com-
puter simulations using detailed models 
of the many analytical steps will be used to 
design better proteomics experiments. These 
simulations will refocus proteomics efforts 
toward experimental designs that have higher 
chances of success and will limit the current 
waste of resources. Higher chances of suc-
cess are instrumental to the completeness of 
the analyses needed for developing systems 
biology and for discovering low-abundance 
protein biomarkers. We envision that pro-
teomic studies will be reported with accurate 
assignment of the statistical significance10,11 
of each result and with information on what 

fraction of the proteome was actually covered by the experiment. 
The success rate can always be assigned when there is an estimation 
of the total number of proteins in the proteome. The RDR provides 
more refined information on what fraction of a proteome has been 
detected and can be assigned once the protein abundances of a pro-
teome are known.

METHODS
Simulations. The simulations were performed by randomly selecting a mixture 
of proteins from the human proteome. Each protein in the mixture was ran-
domly assigned a different amount based on the distribution of protein amounts 
in the sample. The mixture of proteins was digested and the resulting proteolytic 
peptides were randomly selected based on the assumed precolumn survival 
probability. The proteolytic peptides surviving the precolumn process were sepa-
rated into fractions, either randomly or according to a separation model12. The 
separated peptides were randomly selected based on the assumed total survival 
probability. Finally, the surviving peptides were considered detected by MS if 
their amount was above the detection limit and their peak intensity was within 
the dynamic range of the mass spectrometer. The entire process was repeated 
to obtain sufficient statistics (at least 30,000 proteins selected). The simulation 
tool is accessible at http://prowl.rockefeller.edu/modeling/.

Distribution of protein amounts in the sample. Based on published measure-
ments on yeast1, we assumed that the shape of the protein-abundance distribu-
tions is Gaussian for tissue and semi-Gaussian for body fluids (Figs. 2 and 3 and 
Supplementary Figs. 1–5 and 11–14). The semi-Gaussian distribution takes 
into account that many different proteins can be secreted in low amounts into 
a body fluid. The parameter σ defining the Gaussian shape of the distributions 
was scaled with the estimated range of protein amounts in tissue and body fluid, 
6 (ref. 1) and 12 (ref. 2) orders of magnitude, respectively: σtissue = 0.60 and 
σBody Fluid = 1.20 (Figs. 2 and 3). The effect of changing the σ-value for the pro-
tein-abundance distribution for tissue was tested (σtissue = 1.00, Supplementary 
Fig. 11). The effect of alternative protein-abundance distributions for tissue 
was tested: semi-Gaussian (Supplementary Fig. 9) and constant over the entire 
range of protein amounts (Supplementary Fig. 10).
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Figure 3  Simulation results revealing the 
influence of the order by which various design 
parameters are varied on success rate and RDR30. 
(a) The RDR30 as a function of the success rate 
when first improving the protein separation (I–II), 
followed by increasing the amount of tryptic 
peptides loaded on the column (II–III), and finally 
enhancing the tryptic peptide separation (III–IV). 
(b) The improved protein separation (I–II) is 
followed by enhanced peptide separation (II–III), 
which leads to no improvement of the success 
rate and RDR30 until the amount loaded on the 
column is increased (III–IV).
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Sample handling: losses. Peptides can be lost by not being released during diges-
tion of the sample, sticking to the walls of tubes and capillaries, not being eluted 
off the column, not ionizing properly in the ion source of the mass spectrom-
eter, not being selected for fragmentation or not fragmenting well enough to 
provide sufficient information to identify the peptide with high statistical sig-
nificance. All these potential losses were modeled using two parameters: (i) the 
total survival probability, that is, the probability that the peptide survives from 
digestion through identification; and (ii) the precolumn survival probability, 
that is, the probability that the peptide survives until it is bound to the column. 
Supplementary Figure 5 shows the effect of changing the total survival prob-
ability.

Sample handling: amount limit. At each sample-handling step the maximum 
amount that can be used is potentially limiting. For the experiments typically 
performed in proteomics analysis, the limiting step is the RPC separation of 
the proteolytic peptides using a nanobore column (≈75 µm i.d.). We studied 
the effect of changing the amount limit for the peptide separation step (Figs. 
2 and 3 and Supplementary Figs. 1–5 and 9–14).

Sample handling: separation. The protein separation was assumed to distrib-
ute the proteins randomly and uniformly among the fractions resulting in an 
equal number of proteins in each fraction (10, 30, 100, 300, 1,000, 3,000, 10,000 
and 30,000 proteins). It was assumed that the peptide separation results in the 
peptides being uniformly and randomly distributed among the fractions (30, 
60, 100, 300, 1,000 or 10,000) (Figs. 2 and 3). This approach was compared with 
using a retention time model for RPC separation12 (Supplementary Figs. 12 
and 13). The different degrees of fractionation can be envisioned as a variation 
of the difference between the centroids of the peaks of eluting peptides without 
variation of peak duration. In many proteomics experiments the separated 
peptides are directly analyzed by MS and fractions are not collected. When 
comparing the simulated separation with these types of experiments, the num-
ber of fractions in the experiment can be estimated from the ratio between the 
effective length of the separation and the width of a peptide peak.

MS analysis. The MS detection limit (10, 100 and 1,000 amol) defines the mini-
mum amount of a peptide that is required for detection in the mass spectrometer 
(Supplementary Fig. 1). The MS dynamic range (2, 3, 4 and 5 orders of magni-
tude) is the range of peak intensities that can be detected simultaneously—that 
is, it is the ratio between the largest and the smallest peaks that can be observed 
at the same time (Supplementary Fig. 2). The peak intensities were assumed to 
be proportional to the peptide amount with a proportionality factor that was 
selected from a random uniform distribution (± 1 order of magnitude). The effect 
of varying the range of the peak intensity variation is shown in Supplementary 
Figure 14. The finite MS data acquisition rate can limit the success rate and RDR. 
The finite acquisition rate was modeled by selecting the x most abundant peptides 
in each fraction (Supplementary Fig. 6). Losses due to acquisition-rate limita-
tions can potentially be overcome by repeated analysis. The effect of repeated 
analysis was studied by repeated simulation of the MS detection step for the same 
randomly selected protein mixture (Supplementary Fig. 7).

Experimental validation. S. cerevisiae, grown to mid-log phase, was harvested 
by centrifugation and frozen as pellets in liquid nitrogen and disrupted with a 
Retsch MM301 mixer mill that was maintained at liquid nitrogen temperature, 
and stored at –80 °C. The proteins were precipitated with trichloroacetic acid, 
resuspended in 6 M guanidine HCl, and quantified using the BCA (bicin-
choninic acid) Protein Assay kit (Pierce). The protein mixture was diluted 
with 100 mM ammonium bicarbonate and digested using two enzymes: first, 
Endoproteinase Lys-C (Sigma) for 6 h in 2 M guanidine HCl and second, 
trypsin (Promega) for 24 h in 0.5 M guanidine HCl. We loaded 0.6 µg of the 
resulting peptide mixture on to a Zorbax 300-SB C18 300 µm i.d. × 150 mm 
column (Agilent) and analyzed the results by LC-MS/MS using a SMART 
System (GE Healthcare) coupled to a Finnigan LTQ linear ion trap mass spec-
trometer (Thermo Fisher). The MS/MS spectra were searched with X! Tandem 
(http://www.thegpm.org/) and proteins with at least one matching peptide 
with e<10−3 were included in the results.

Note:  Supplementary information is available on the Nature Biotechnology website.
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