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Abstract 

Breast cancer affects one in eight women in America and is a leading cause of death from cancer worldwide. In the 
current study, four types of Omics data including copy number variation, gene expression, proteome and 
phosphoproteome were collected from seventy-seven breast cancer patients. Individual types of Omics data were 
used to separately construct predictive models to predict ten-year survival, an important clinical hallmark. The 
predictive models constructed with proteome data achieved decent predictivity (mean AUC = 0.725) and 
outperforms the models constructed with other types of Omics data. This indicates that high quality, large scale 
protein data is more effective for survival prediction compared to other types of omics data. Further, we 
experimented with ten different data fusion techniques (generic and Multi-kernel learning based) to test whether 
combining multi-Omics data can result in improved predictive performance. None of the data fusion techniques 
tested in the current study outperforms the predictive models built with the proteome data.   

Introduction 

Breast cancer affects one in eight women in America, and is a leading cause of death from cancer worldwide (1). 
Extensive genomic characterization of breast cancer has been conducted in the last ten years, leading to clinically 
relevant molecular subtyping (2), increased accuracy in prognostication (3-5), and success in targeted therapy (6, 7). 
One missing link in our knowledge is how genomic changes translate into changes in proteome and 
phosphoproteome which in turn execute the phenotypic characteristics of the disease. Since the proteome and 
phosphoproteome are more proximal to the manifestation of the disease, it is likely that they contain more predictive 
information regarding the clinical outcomes of the disease and could lead to the development of more accurate 
prognostic technologies. While proteomic characterization was performed in the Cancer Genome Atlas (TCGA) 
breast cancer study using reversed phase protein arrays (8), only 171 cancer-related proteins and phosphoproteins 
were quantified. To provide greater depth of proteomics characterization, the NCI Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) (9) analyzed the global proteomes of genomically annotated TCGA breast tumor 
specimens (10).       

In the current study, we utilized machine learning method to predict ten-year survival, an important clinical 
hallmark, of breast cancer patients. First, we constructed predictive models with four different types Omics data, 
including copy number variation, gene expression, proteome, and phosphoproteome, to determine which type of 
Omics data is the most predictive regarding ten-year survival. Then, different data fusion techniques were employed 
to combine the above mentioned four types of Omics data, as an effort to improve the predictive performance 
obtained from the models based on a single type of Omics data. Data fusion for data coming from difference sources 
has been an active area of research in machine learning. Data fusion techniques have been applied to solve problems 
in various domains, including robotics, market research and medicine (11-14). However, to the best of our 
knowledge, the current study is one of the first to explore the efficacy of different data fusion technique on genome-
scale multi-Omics data, since global proteome data has only recently became available.  

Identifying the type of Omics data or the combination of multi-Omics data that lead to the best predictive 
performance is critical in the following ways. First, it could serve as a guide for experimentalists and clinicians, such 
that more experimental resource can be dedicated to the identified Omics data domain and generate new data for 
mechanistically relevant discovery and hypothesis testing. Second, the mathematical predictive models constructed 
with the most informative Omics data type(s) could be readily translated into prognostic technologies and used in a 
clinical setting.   

Methods 



Data 

Copy number variation, gene expression, proteome and phosphoproteome data for 77 breast cancer tumors 
characterized by the TCGA were utilized to predict the ten-year survival of the patients. 11 out of the 77 patients did 
not survive longer than ten-years. For copy number variation and gene expression data, the original characterization 
from TCGA were used, and the proteome and phosphoproteome data was generated by the Broad Institute as a part 
of the CPTAC Consortium (15).Tumor samples were analyzed by high-resolution, accurate mass tandem mass 
spectrometry that included extensive peptide fractionation by high pH reversed phase chromatography and 
phosphopeptide enrichment by immobilized metal affinity chromatography (IMAC). An isobaric peptide labeling 
approach (iTRAQ) was employed to quantify protein and phosphosite levels across samples, with 37 iTRAQ 4-
plexes analyzed in total. Each 4-plex contained 3 samples from different subtypes and a common reference that was 
created by pooling material from 40 tumors (with equal representation by weight of the 4 subtypes of breast tumors). 
24,174 features of copy number variation, 16,525 features of gene expression, 12,553 features of proteome, and 
32,939 features of phosphoproteome characterizing the global molecular profile of the breast tumors were used in 
the present study. 

Predictive Models 

To assess which set of Omics data is the most informative in predicting ten-year survival, predictive models were 
built with each type of Omics data, i.e. copy number variation, gene expression, proteome, and phosphoproteome 
respectively. 

For individual type of Omics data, we trained the following five classification models: support vector machine 
(SVM) with linear kernel, SVM with polynomial kernel, SVM with rbf kernel (16), Bayesian logistic regression 
(17), and random forest (18). For the SVM models and Bayesian logistic regression, hyperparameters were selected 
via nested cross validation. Three feature selection strategies were explored: (i) no feature selection: all features 
were used; (ii) univariate association: all features that are associated with the target univariately were selected; (iii) 
SVM RFE: features were selected via recursive elimination process based on the predictive performance of a linear 
SVM model (19).  

To assess whether combining different types of Omics data can improve the predictive performance over predictive 
models built with a single type of Omics data, we explored the following data fusion techniques: (i) All Omics 
concatenated: features from individual Omics data concatenated. (ii) All Omics concatenated with feature selection: 
features from individual Omics data concatenated with feature selection employed on the concatenated features. (iii) 
Selected features concatenated: features were selected first for individual types of Omics data by some feature 
selection method. The selected features were then concatenated.(20) (iv) Multi-kernel learning (MKL): 8 kernel 
matrices (using linear kernel; polynomial kernel with degree 1, 2, and 3; and rbf kernels with sigma (10-6, 10-4, 10-2, 
and 10-1) were computed for individual types of Omics data, and MKL was applied for classification. (v) Selected 
features MKL: feature selection was conducted on individual type of Omics data. Then, 8 kernel matrices were 
computed for the selected features for individual type of Omics data. MKL was applied for classification (21, 22). It 
is worth noting that, different from the previous two data fusion techniques, which only takes care of combining data 
from different sources, the MKL also learns the decision boundary for the classification. The above five data fusion 
techniques were used to combine two sets of Omics data: (i) copy number variation, gene expression, proteome, and 
phosphoproteome (we denote data fusion strategies resulting from this set with “_4”); (ii) proteome and 
phosphoproteome (we denote data fusion strategies resulting from this set with “_2”), resulting in ten data fusion 
strategies: (i) All Omics concateneated_4, (ii) All Omics concatenated with feature selection_4 (iii) Selected features 
concatenated_4, (iv) MKL_4, (v) Selected features MKL_4 (vi) All Omics concateneated_2 (vii) All Omics 
concatenated with feature selection_2 (viii) Selected features concatenated_2 (ix) MKL_2, and (x) Selected features 
MKL_2. The rationale of combining proteome and phosphoproteome is that these two type of Omics data results in 
better predictive performance when used to build predictive models individually. Figure 1 gives a graphical 
illustration of the above mentioned ten data fusion strategies.  

For data fusion strategy (i)-(iii) and (vi)-(viii), we trained the following five classification models: support vector 
machine (SVM) with linear kernel, SVM with polynomial kernel, SVM with rbf kernel, Bayesian logistic 
regression, and random forest. For data fusion strategies (vi), (v), (ix), and (x), MKL were used as the classifier. For 
the SVM models, Bayesian logistic regression and MKL, hyperparameters were selected via nested cross validation. 



Two feature selection strategies were explored for data fusion strategies (ii), (iii), (v), (vii), (viii), and (x): univariate 
association and SVM RFE. 

The SVM models were constructed with LibSVM software (23). The Bayesian logistic regression models were 
constructed with the BBR software (24). And the random forest models were constructed with the random forest 
package in R (25). The SKMsmo software was used for MKL (21, 22). 

 Performance Estimation and Statistical Comparison 

For performance estimation, 4 fold cross validation were implemented with 10 stratified random splits, resulting in 
40 performance estimates for each model. Area under the ROC curve was used as the performance estimation 
metric. Paired sample t test were used to compare the performance between pairs of models. p-values were FDR 
adjusted to correct for multiple comparisons (26).  

	
  
Figure 2: Data fusion strategies employed in the present study. 

Results 

Proteomics Data is the most Informative in Predicting Ten-year Survival 

Among the predictive models constructed with a single type of Omics data, models 
constructed with proteomics data achieved better predictive performance (as measured by 
AUC) for all classification models except random forest. The random forest classifier did 
not perform well in general in the current study. Feature selection using univariate 
association improved the predictive performance compared to when feature selection was 
not employed, whereas feature selection by SVM-RFE did not improve the predictive Figure 1: The AUCs for 

predictive models built with one 
type of Omics data with SVM 
rfb and univariate association 
for feature selection. 



performance in most of the cases (Table 1). Fig 2 shows the average AUC of the models trained with SVM rbf using 
univariate association as the feature selection method. The predictive performance for the model trained with the 
proteomics data (0.725±0.222, Mean±Std) is significantly better (p-values<0.05) compared with the models trained 
with phosphoproteome (0.671±0.234), gene expression (0.547±0.207), and copy number variation (0.463±0.218). 
The predictive performance of models constructed with features from a single type of Omics data with SVM rbf as 
the classifier and three different feature selection methods were shown in Table 1. The predictive performance of the 
other classification methods follows a similar pattern as the SVM rbf (see online appendix table 1 at 
sisima.net/breast_cancer_study/index.html).    

Combining Multi-Omics Data did not Improve Predictive Performance in the Current Experimental Setting 

To examine whether combining multi-Omics data could improve the 
predictive performance of the models constructed with data from a single 
type of Omics data, five different data fusion strategies were employed. 
The five different methods were used to combine two sets of Omics data: 
(i) all four types of Omics data available, (ii) proteome and 
phosphoproteome. Ten data fusion strategies were obtained from the above 
process. None of the ten data fusion strategies tested in the current study 
resulted in significantly better predictive performance compared to the 
model constructed with the proteome data alone (Figure 3 and Table 1). 
When using the SVM rbf classifier the best data fusion strategy is (vii) All 
Omics concatenated with feature selection_2 with univariate association as 
the feature selection method. This strategy achieved a predictive 
performance of 0.676±0.234 and is not significantly different from the 
model built with proteome data (0.725±0.222). It is worth noting that 
strategy (ii) and strategy (iii), as well as strategy (vii) and strategy (viii), are 
equivalent when univariate association was applied as the feature selection 
method, since the order of applying data concatenation and applying 

univariate association as feature selection does not affect what features would be selected. The predictive 
performance of the other classification methods follows a similar pattern as the SVM rbf (see online appendix table 
1 at sisima.net/breast_cancer_study/index.html). 

 

 

Discussion 

The primary contribution of this study is to show that the global/system level proteome data have superior predictive 
value for predicting ten-year survival for breast cancer patients. The predictive signal in the proteome data is 
significantly greater compared to that in the copy number variation data and the gene expression data. This is likely 
due to the fact that changes on the gene level need to manifest in alternations on the proteome level to drive 
phenotypical, functional and pathological changes. Examining the most predictive proteins for ten-year survival can 

Table 1: Predictive Performance of models constructed with a single type Omics data vs. that with multi-Omics Data. Results 
are shown for SMV rbf classifier and MKL. Different feature selection methods were applied when applicable. Results are 
shown in the form of mean AUC with standard deviations inside a pair of Parentheses. 

Figure 3: Predictive performance for model built with 
proteome data vs. that with data fusion methods. 
Figures shows predictive performance of models built 
with SVM rbf with univariate association as feature 
selection methods when applicable. 



help identify the biological and/or pathological pathways leading to resilience/vulnerability of breast cancer death. 
Molecular treatment targets might be discovered from these pathways.   

This work can be extended by examining a larger population of breast cancer patients. The current sample size 
(N=77) is limited by the availability of proteome data and phosphoproteome data. The superior predictive value of 
the proteome for ten-year survival identified in this study warrants the collection of global/system level proteome 
data from more breast tumors and other types of tumors, in order to systematically assess the value of proteome data 
in cancer outcome prediction. 

Moreover, recent study has indicated that integrating mammography features and selected GWAS data can improve 
breast cancer diagnosis (27). Similarly, prognostics of breast cancer might be improved by combining molecular 
profile of the patients (e.g. proteome) with other clinical data sources, such as family history, imaging data, life style 
information, previous treatment information, medication and various laboratory test results. 

Another area for extending the current work is by exploring additional data fusion techniques. In the current study, 
we explored generic data fusion methods (concatenation, concatenation with feature selection and feature selection 
prior to concatenation) and data fusion methods based on MKL. None of these methods improved predictivity 
compared to model built with proteome data. However, other data fusion methods might be more effective. 
Ensemble methods that build separate predictive models on different types of Omics data and obtain the final 
prediction through an ensemble classifier might be a viable candidate (28, 29). In addition, data driven feature 
construction/feature reduction techniques can be examined. Examples of these techniques include principle 
component analysis (PCA) based feature reduction, kernel PCA based feature reduction(30), and genetic 
algorithm(31). Moreover, domain knowledge based feature selection and feature construction methods could be 
beneficial as well. One potential feature construction strategy is to combine proteome data phosphoproteome data by 
computing the ratio between the quantities of a particular phosphoprotein and its corresponding protein, since this 
ratio reflects the activation of a particular protein.  

Conclusion 

The current study examined global/system scale multi-Omics data, and identified proteome data as the most 
informative data modality for breast cancer prognosis prediction. Various data fusion strategies were implemented 
for combining global/system scale multi-Omics data, however, these strategies did not result in better predictive 
performance. It is our hope that future development of data driven and domain knowledge based data fusion 
methods could lead to improvement in predictive tasks in biomedicine. 
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