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Mass spectrometry (MS) combined with database search-

ing is the method of choice for identifying proteins

during proteome projects. In a typical proteomics experi-

ment, the proteins of interest are first enriched and then

separated by one- or two-dimensional gel electrophor-

esis1–7.The separated proteins are digested with an enzyme

and the proteolytic peptides are analysed by mass spec-

trometry [or tandem mass spectrometry (MS–MS)]. The

protein-separation step is sometimes left out and instead

the complex mixture of proteins is digested and the 

resultant peptides are separated by liquid chromatography

before mass analysis8–10.

The results of using mass spectrometry and database

search engines currently depend on the user to a signifi-

cant extent. The process requires several disparate pieces

of software as well as manual intervention by a skilled

operator to achieve optimum results. Determining the

mass of peaks in a mass spectrum frequently requires a

user to look at the values, and fix mistakes made by the

signal-processing algorithms. The software that has been

developed assumes a highly motivated, knowledgeable

user who can quickly evaluate the results and make their

own decisions.

In this article, we assess the different database-search

algorithms that are available for protein identification and

discuss methods for determining the quality of the search

results.

Peptide-mapping experiments
The starting point for MS analysis is usually peptide map-

ping: proteins are digested with an enzyme and the mol-

ecular masses of these peptides measured. The database

search engines mimic the experiment by calculating the

possible peptide masses using the specificity of the en-

zyme for each protein sequence in a database. The meas-

ured masses are then compared to the calculated masses

and a score is calculated11–15. There are currently two

ways to identify proteins from mixtures by peptide map-

ping. In one, the peptides matching the top-ranking pro-

teins in the first search are removed and a second search

is performed12. In the other, fusion proteins are formed

between the top-ranking proteins and the score is calcu-

lated for these fusion proteins16.

The simplest scoring method for peptide mapping is

to count the number of measured peptide masses that

match calculated peptide masses within the accuracy of

the measurement. This scoring method works well for

high-quality experimental data but has the weakness that

it usually gives higher scores to larger proteins, for which

more possible peptides can be calculated and thus have a

higher probability of random matching. More-sophisti-

cated methods for identifying proteins are also based on

counting the number of matching peptide masses but

they make better use of the experimental information by

using our knowledge of proteins to increase the selectiv-

ity and sensitivity of the identification13,16–19.

Extending peptide mapping: MS–MS
fragmentation
Proteins from organisms with fully sequenced genomes

can often be successfully identified using peptide-mapping

information.The success rate for peptide mapping is much

lower when applied to organisms with incompletely known

genomes or to complex protein mixtures. More experi-

mental information can be obtained by tandem mass

spectrometry (MS–MS). Ions corresponding to a single

peptide sequence are isolated by a mass spectrometer and

fragmented by excitation, which results in unimolecular

dissociation reactions, and the masses of the fragment

ions measured.

The database search engines mimic the experiment by

calculating the possible peptide-fragment masses using

the specificity of the enzyme for each protein sequence in

a database. The measured fragment masses are compared
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Database searching with mass-
spectrometric information
Database searching using molecular-mass information has become a popular method
for determining the sequence of a protein, a key step in proteomics. This article
discusses the various database-search algorithms that are available for protein
identification and the issues involved in interpreting the results.
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with the calculated fragment masses and a score is calcu-

lated for the comparison20,21.Alternatively, search engines

can extract partial sequence information from the spec-

trum based on ‘ion series’.

In contrast to peptide maps, which can contain global

information about a protein, tandem mass spectra contain

a lot of information on small sections of a protein.There

is often enough information available that databases with

incomplete gene sequences can be searched, such as the

expressed sequence tag (EST) database, which contains

partial information in particular on human and mouse

genes. MS–MS has also been used to identify complex

protein mixtures22.

Available database-searching algorithms
After the peak masses have been extracted from the mass

spectrum, the next step in the analysis is to use this infor-

mation to identify proteins by database searching. There

are many search tools available (Box 1), which are based

on different algorithms. Table 1 shows these search tools

and the various parameters that can be used to define the

experiment and to restrict the search to sections of the

protein-sequence database. All the search programs work

by comparing the measured masses with masses calculated

using protein sequences in a database. Software tools that

rank the proteins in the database according to the number

of matching peptides include PepSea for peptide mapping12,

MS-Fit23, MS-Tag23, PepFrag24 and PeptIdent/MultiIdent25.

The MOWSE algorithm13 has a higher selectivity and

sensitivity than these algorithms, which simply count the

number of peptide matches. MOWSE takes into account

the relative abundances of the peptides of a given mass 

in the database and also compensates for protein size.

MASCOT17 is based on the MOWSE algorithm but also cal-

culates an approximate probability that the observed match

between experimental data and a protein sequence is a

random event. MASCOT can use information from both

peptide maps and tandem mass spectra to identify proteins.

ProFound16 uses Bayesian statistics to rank the protein

sequences in the database by their probability of having

generated the experimental data. The algorithm uses 

detailed information about each individual protein se-

quence in the database and can incorporate additional

experimental information (e.g. peptide-fragment-mass

information, amino acid composition or sequence infor-

mation) when available. Systematic information that is

experimentally obtained is also included in the algorithm

(e.g. information about the distribution patterns of pro-

teolytic peptides). ProFound uses a two-step approach to

identify protein mixtures. First, the proteins in the data-

base are ranked according to how well they match the

experimental data, assuming that a single protein is present;

second, fusion proteins are constructed from the top-

ranking proteins and ranked.The advantage of the Bayesian

approach is that different types of information can be

included in a natural way and so it is possible to make

optimal use of all of the available information and to

increase the sensitivity and selectivity of the algorithm.

PeptIdent219 uses a general algorithm that does not

incorporate any knowledge about protein properties.

PeptIdent has been optimized with a genetic algorithm –

using a training set of protein mass spectra to ‘evolve’ the

search parameters to find values that give the best results.

This approach is different from that of the other algo-

rithms (ProFound, MOWSE and Mascot), which are based

on either our knowledge of the properties of individual

proteins or of database averages.

PepSea for MS–MS21 uses information from peptide

sequence tags – short partial amino acid sequences of

proteolytic peptides, the mass of the peptide and the

masses of the parts of the peptide that have not been se-

quenced.These searches are fast but require the extraction

of the peptide sequence tag before searching (although

this can be automatic).
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Box 1. URLs for the primary sites associated with
database-search algorithms
ProFound
http://www.proteometrics.com/prowl-cgi/ProFound.exe

Mascot
http://www.matrixscience.com/cgi/search_form.pl?SEARCH=PMF

PepSea
http://pepsea.protana.com/PA_PepSeaForm.html
http://pepsea.protana.com/PA_PeptidePatternForm.html

MS-Fit
http://prospector.ucsf.edu/ucsfhtml3.2/msfit.htm

MOWSE
http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse

PeptIdent
http://www.expasy.ch/tools/peptident.html

MultiIdent
http://www.expasy.ch/tools/multiident/

SEQUEST
http://thompson.mbt.washington.edu/sequest/

Mascot
http://www.matrixscience.com/cgi/search_form.pl?SEARCH=MIS

PepFrag
http://www.proteometrics.com/prowl/PepFragch.html

MS-Tag
http://prospector.ucsf.edu/ucsfhtml3.2/mstagfd.htm
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SEQUEST20 calculates a cross-correlation function be-

tween the measured tandem mass spectrum and the protein

sequences in the database and this cross-correlation function

is used to score the proteins in the database. SEQUEST

supports the use of information from several fragment-

mass spectra in the database search. This approach does

not require the extraction of any information from the

mass spectra, but the searches are time consuming.

Evaluating the results generated by
automated identifications
If protein identification moves out of specialized labora-

tories and becomes a widely practiced, high-throughput

technique, the manual intervention and decision making

prevalent today must disappear. Projections for the through-

put of a large-scale proteomics facility are as high as

105–106 protein identifications per week using current

mass spectrometers and computers26. Mass spectra must

be processed completely automatically to achieve this rate

of analysis, using peak-finding techniques that extract the

necessary information from the spectra.

Mass spectra obtained from low-resolution instruments

(M/DM , 2000, where M is the mass assigned to the peak

and DM is the full width of the peak at half maximum) are

already routinely processed in this manner (e.g. the spectra

obtained from quadrupole MS and MS–MS devices).

The information content of medium-resolution spectra

(2000 , M/DM , 20 000) has made fully automated pro-

cessing more difficult because of partially resolved isotopes

and overlapping isotopic distributions. However, there are

now algorithms available to perform this task.These algor-

ithms range from simple heuristics (such as deisotoping)

to more-reliable data-modeling procedures that calculate

isotope-distribution parameters rather than simply count-

ing peaks.The goal of these algorithms is not to assign every

peak but to identify proteins automatically and confidently.

However, most of the commonly used algorithms are propri-

etary and will probably never be described in the literature.

The advent of sophisticated peak-finding schemes will

remove the current bottleneck in applying easy-to-use,

medium-resolution mass spectrometers to protein identi-

fication, allowing them to be used for high-throughput
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Table 1. A comparison of database search algorithm characteristics for MS-related protein
identification

Name WWWa MS type Taxonomy Enzymes Sequence modifications Protein Masses Other inputs

data properties

ProFound Yes MS and Yes 8 1 user User defined, partial and complete Mass 1 pI m0 and A AA

MS–MS defined

Mascot Yes MS and Yes 10 Predefined partial and complete Mass m0 or A –

MS–MS

PepSea Yes MS and No 8 Cys blocking and Met oxidation Mass m0 or A Sequence tags

MS–MS

MS-Fit Yes MS Yes 11 and Predefined: partial and complete Mass 1 pI m0 or A AA

12 mixtures

MOWSE Yes MS Yes 8 None Mass m0 and A AA 1

sequence tags

PeptIdent Yes MS Yes 1 Cys blocking and Met oxidation Mass 1 pI m0 or A –

MultiIdent Yes MS Yes 9 Cys blocking and Met oxidation Mass 1 pI m0 or A AA 1

sequence tags

SEQUEST No MS–MS Yes User defined User defined partial and complete Mass 1 pI m0 or A –

PepFrag Yes MS–MS Yes 5 Cys blocking and phosphorylation Mass 1 pI m0 or A AA

MS-Tag Yes MS–MS Yes 11 and Predefined partial and complete Mass 1 pI m0 or A AA

12 mixtures

Abbreviations: A, average chemical mass; AA, amino acid composition; m0, monoisotopic mass; MS, mass spectrometry; MS–MS, tandem MS.
aDatabase availability on the world-wide web
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operations. Automated search engines can then be built

with more weight placed on mass accuracy (i.e. accurate

mass data can be used more intelligently). This level of

confidence in mass measurement will allow the search

engines to detect and to correct the processed data, to

remove operator intervention even more. Data faults such

as minor mass-calibration errors and the occasional choice

of inappropriate isotope peaks will be detectable and ap-

propriate remediation could occur automatically. These

developments in the front end of the process will allow

peptide maps to be processed and identifications to be

performed and checked by very-limited MS–MS experi-

ments in a matter of seconds.

Even with the best mass measurements, random match-

ing between the MS data and the protein sequences in the

database can lead to false identifications. Most search algo-

rithms will return a protein sequence with a highest score,

even if the matches are random. It is thus very important

to be able to tell what the chance is that a result with a

certain score is random. The probability of a false identi-

fication can be calculated if the score-frequency function

for random identifications is known. One approach to

obtaining the score-frequency function for random iden-

tifications is by computer simulations27. An alternative

approach is directly to calculate the probability that a cer-

tain protein sequence matches the experimental data17,18.

The currently available direct calculations are, however,

less reliable than the simulation because the process is

complex and so it is necessary to make approximations.

The score-frequency function for random identifications

can be obtained by computer simulations using the fol-

lowing method27.

• Select a random protein sequence from a protein-

sequence database.

• ‘Digest’ the selected protein according to the specificity

of the enzyme.

• Select a random peptide and calculate its mass.

• Repeat this procedure and construct a synthetic peptide

map with the calculated peptide masses, all from differ-

ent proteins.

• Search the protein-sequence database using the infor-

mation from the synthetic peptide map and save the top

score (corresponding to random matching between a

protein sequence in the database and the synthetic peptide

map).

• Repeat the searches with different synthetic peptide maps

to obtain a distribution of scores for random identification.

The quality of protein-identification results can sub-

sequently be assessed when the score-frequency function for

random identifications is known.The score is compared to

the frequency function to give the probability that the score

is obtained from random matching (i.e. the probability

that the protein identified is a false positive).An objective

method to assess the quality of the search results is a pre-

requisite for the automation of protein identification.

Future developments
The future of database search engines that use experi-

mentally determined masses to identify proteins will be

shaped by the following developments:

• improvements in the signal-processing algorithms used

to generate mass spectra;

• the automation of protein-identification searches and

the rational storage of results in large databases;

• the development of data-dependent search engines that

can guide the data-gathering process in real time; and

• post-processing using additional statistical data from

compiled databases of theoretical and experimentally

determined sequence properties.

Simple approaches to increasing the speed of the algo-

rithms, such as increasing processor power to make up

for the limitations of existing algorithms (e.g. using clus-

ters of inexpensive off-the-shelf computers), will allow

processing to be done on the same time-scale as the

measurement process. The invention and adoption of

reliable, reproducible front-end algorithms will allow

database search engines to develop into much-more-

useful discovery tools. The current search engines

require complete sequence data in order to make identi-

fications. Peptide-map-based engines require nearly com-

plete, translated, contiguous sequence information and

MS–MS-based engines require much shorter regions of

translated contiguous information (e.g. EST sequences);

however, most techniques are currently limited to fully

translated information28.

The next generation of search engines must deal with

gene-level information. A straightforward extension of

the use of MS-based information is its use in finding

open reading frames and exon–intron combinations in

chromosomal DNA. Armed with the knowledge that a

gene product exists and that it produces a given set of MS

and MS–MS results, it should be possible to assign hypo-

thetical exon–intron patterns to genome sequences using

very-simple iterative schemes of data-dependent analysis

(Fig. 1). Information made available in this way will be

complementary to data obtained from mRNA sequencing

and from sequence-interpretation software. The state

machine shown in Fig. 1 can be applied to a variety of

data-dependent experiments, as long as a hypothesis can

be formulated and tested in an iterative fashion. Examples

of other problems that are amenable to this approach are

the assembly of expressed sequence tags into complete

contiguous sequences and the experimental assignment

of mRNA alternate-splicing sites.
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Improvements in the speed and error tolerance of

protein-identification experiments will allow new types

of biological question to be asked and answered by the

incorporation of post-processing heuristics into search

engines. A large part of interpreting the results of a pro-

tein-identification experiment is trying to separate the

wheat from the chaff. The investigator must manually

perform the following steps:

• reject trivial identifications (e.g. cytoskeletal compo-

nents, housekeeping and stress-related proteins);

• find identifications confirmatory of their primary 

hypothesis; and

• carefully watch for unexpected but possibly important

sequences that might correlate with their experimental

system.

A simple type of post-processing heuristic that could

replace the current practice would be a set of appropriate

questions that could be asked of large sets of data using

either fuzzy logic or Bayesian methods. Results from a large

set of experiments could be ‘sliced’ with a collection of con-

ditions. Compiled databases created using existing sequence-

analysis methods, such as BLAST or secondary-structure-

prediction algorithms, would be used to formulate a group

of fuzzy sets corresponding to these questions in real time.

Seeing the inverse degree of participation of all identified

proteins in each set would allow the investigator to assess

the results: relevant data would be located near the origin.

The resulting data ‘slices’ could then be displayed visually

using similar visual metaphors to those currently used com-

mercially to display demographic or customer-preference

information. An investigator could then concentrate on

repeating these higher-level questions to answer specific

biological questions more accurately or completely based

on a data set, rather than slogging through the mechanical

process of running various types of search engines through

databases and manually assembling the results.
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Figure 1. Exon–intron-
pattern discovery

A simplified state-machine
representation of an

exon–intron-pattern discovery
search engine. This type of

state machine can be used for
a wide variety of experiments

simply by altering the
conditions used to find
hypothetical patterns in

sequence databases.
Abbreviations: MS, mass

spectrometry; MS–MS, tandem
MS.
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The analysis of a proteome involves the resolution of 
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1500 proteins.
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does and also allow the rapid identification of resolved

proteins. This article describes some alternative methods 

that combine separation and identification of proteins,

including one- and two-dimensional (1D and 2D,

respectively) chromatography methods using high-

performance liquid chromatography (HPLC), capillary

isoelectric focusing (CIEF), capillary electrophoresis (CE)

or microcapillary chromatography. As with 2D PAGE,

MS is the method of choice for identifying proteins re-

solved by liquid separation methods. By eliminating the

steps required to transfer proteins from the separation

device to the mass spectrometer, several of the methods

described might be better suited to high-throughput

analysis.
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New methods of proteome analysis:
multidimensional chromatography
and mass spectrometry
Shortcomings in two-dimensional gel electrophoresis have encouraged the search 
for new methods of high-throughput proteome analysis. A variety of chromatographic
methods can be coupled directly to a mass spectrometer to accomplish this task.
However, multidimensional chromatography must be used to achieve the resolving
power of two-dimensional gel electrophoresis. Current systems still fall short of the
resolving power of two-dimensional gel electrophoresis but they have the potential 
to improve.
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