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The interest in proteomics has recently increased
dramatically and proteomic methods are now applied to many
problems in cell biology. The method of choice in proteomics
for identifying and characterizing proteins is mass
spectrometry combined with database searching. Software
tools have been improved to increase the sensitivity of
protein identification and methods for evaluating the search
results have been incorporated
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Introduction
Proteomics is the study of all the expressed proteins 
of an organism. The information that proteomics studies
can provide includes expression levels, post-translational
modifications, subcellular localizations, protein–protein
interactions, and protein–nucleic acid interactions. 

The first step in proteomic analysis is usually sub-frac-
tionation of the cells of interest followed by separation
of the proteins by 1- or 2-dimensional gel electrophore-
sis. The next step is to cut out and enzymatically digest
the proteins of interest from the gel for mass spectro-
metric analysis [1–14]. An alternative method is to
digest the protein before separation by gel elec-
trophoresis and instead separate the peptides by liquid
chromatography and analyze the peptides by tandem
mass spectrometry [15–18].

The mass spectrometric analysis usually begins with pep-
tide mapping, that is, the separated proteins are digested
with an enzyme and the masses of the proteolytic peptides
are measured with mass spectrometry. The masses of the
measured proteolytic peptides are compared to predicted
proteolytic peptides from protein sequence databases
[19–23]. Each protein sequence in the database is digested
according to the specificity of the enzyme and the masses
of the resulting peptides are calculated and a theoretical
mass spectrum is constructed (Figure 1). The measured
mass spectrum is compared with the theoretical mass spec-
trum and a score qualifying the comparison is calculated.
The protein sequences in the database are sorted accord-
ing to the score and the protein sequence with the best
score is selected. 

The success of protein identification by peptide mapping
is a result of certain characteristics of proteins, including
the limited number of proteins for each organism, the large
differences in amino acid sequence, and the large mass dif-
ference between different amino acids. Figure 2 shows the
number of proteins in different organisms that match the
mass of a single tryptic peptide [24], indicating that a mea-
surement of a few tryptic peptides is sufficient for
identification of a protein when the genome sequence is
available. Recent improvements in instrumentation have
made it possible to determine peptide masses with a high-
er mass accuracy, which has improved the success rate for
protein identification by peptide mapping [24–26]. Other
information that can be used to improve the quality of
identifications includes amino acid composition, number
of exchangeable hydrogens [27] and partial amino acid
sequence [3,7,28]. The searches are usually restricted with
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Figure 1

Protein identification using peptide mapping
information. (a) In the experiment, the proteins
are digested with an enzyme and the masses
of the proteolytic peptides are measured with
mass spectrometry. (b) In the database
search, each protein sequence in the
database is digested according to the
specificity of the enzyme. The masses of the
resulting peptides are calculated and a
theoretical mass spectrum is constructed. The
measured mass spectrum is compared with
the theoretical mass spectrum.
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additional information, such as species or taxonomic cate-
gory, protein mass, and protein isoelectric point. Although
peptide mapping is usually applied to pure proteins, the
constituents of simple protein mixtures can also be identi-
fied by peptide mapping [29••,30].

Peptide mapping has a high success rate for identifying
simple protein mixtures from microorganisms with fully
sequenced genomes; however, when studying mammals
the success rate is presently considerably lower. The suc-
cess rate of peptide mapping will increase in the near
future when the human and, soon after, the mouse
genomes will be completed. In the cases where peptide
mapping does not provide sufficient information for confi-
dent identification, it is necessary to obtain more
information. The most common method is to isolate ions
corresponding to a proteolytic peptide in the mass spec-
trometer, fragment them by collisional excitation, and
measure the masses of the fragment ions to obtain partial
sequence information. The measured fragment mass spec-
trum is compared to theoretical mass spectra calculated
from the protein sequences in the database [31,32].

In this article, we will discuss different software tools that
are available for searching protein sequence databases with
mass spectrometric information and how the quality of the
results can be assessed.

Software for protein identification
Peptide mapping
The simplest and most obvious scoring method for pep-
tide mapping is to count the number of measured peptide

masses that correspond to calculated peptide masses in
the theoretical mass spectrum of each protein in the data-
base. Several software tools are available on the Internet
that use this method of ranking the proteins in the data-
base according to the number of matching peptides, for
example, PepSea [20] (http://pepsea.protana.com/
PA_PepSeaForm.html), PeptIdent/MultiIdent [33,34]
(http://www.expasy.ch/tools/peptident.html), and MS-Fit
[26] (http://prospector.ucsf.edu/ucsfhtml3.2/msfit.htm).
This simple scoring method works well for high-quality
experimental data, but has the disadvantage that it usual-
ly gives higher scores to larger proteins because the
probability of random matching is higher. More sophisti-
cated methods for identifying proteins are all based on
counting the number of measured peptide masses that
correspond to calculated peptide masses but they attempt
to make better use of the mass spectrometric information
compensating, for example, for effects of protein size
[21,29••,34–36]. This usually leads to methods that are
more selective and sensitive. 

MOWSE [21] (http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse
and also implemented in MS-Fit at http://prospector.
ucsf.edu/ucsfhtml3.2/msfit.htm) uses average properties of
the proteins in the database to improve the sensitivity and
selectivity of the identification. It takes into account the
relative abundance of the peptides in the database (see
Figure 2) when calculating the score, that is, the chance of
getting a random match to a larger peptide is lower and
therefore it will contribute to a higher degree to the score.
Also the protein size effect is compensated for.

ProFound [29••] (http://prowl.rockefeller.edu/cgi-bin/
ProFound or http://www.proteometrics.com/prowl-cgi/
ProFound.exe) is an expert system for protein identification
using Bayesian theory to rank the protein sequences in the
database by their probability of occurrence. It takes into
account detailed information about each individual protein
sequence in the database and allows for incorporation of addi-
tional experimental information (e.g. amino acid composition
or sequence information) when available. In addition, empir-
ical information about patterns observed for the distribution
of proteolytic peptides along the protein sequence is includ-
ed in the algorithm. One advantage of the Bayesian approach
is that different types of information can be included in a nat-
ural way and therefore it is possible to make optimal use of all
available information and increase the sensitivity and selec-
tivity of the algorithm. ProFound can also be used to identify
simple protein mixtures. A two-step approach is used where
first the proteins in the database are ranked according to how
well they match the experimental data assuming a single pro-
tein is present. In the second step, the top ranking proetins
are fused together pairwise, in groups of three, and so on.
These fusion proteins are then ranked according to how well
they match the experimental data. 

Mascot [35] (http://www.matrixscience.com/cgi/search
form.pl?SEARCH=PMF) is based on the MOWSE 
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Figure 2

Information content in the mass of a single tryptic peptide for
Escherichia coli (~4000 open reading frames [ORFs]),
Saccharomyces cerevisiae (~6000 ORFs), and Homo sapiens
(~100,000 ORFs), at a mass accuracy of 0.5 Da. For S. cerevisiae,
the number of proteins at every mass unit is shown together with a
smooth curve fitted to the data. For E. coli and H. sapiens, only the
smooth fits are shown for clarity [24].
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algorithm [21] but in addition it uses probability-based
scoring. The probability that the observed match between
experimental data and a protein sequence is a random
event is approximately calculated for each protein
sequence in the database. The proteins are then ranked
with decreasing probability of being a random match to
the experimental data.

PeptIdent2 [37]  is an algorithm that has been optimized
using a genetic algorithm. PeptIdent2 is a generic algo-
rithm with many coefficients and does not incorporate any
knowledge about protein properties. The coefficients are
optimized using a training set of protein mass spectra. This
is a very different approach than that of ProFound,
MOWSE, and Mascot, where the algorithms are based on
either our knowledge of the properties of individual pro-
teins or database averages. 

Peptide fragmentation
In contrast to mass spectra of peptide maps, which contain
global information about a protein, peptide fragmentation
mass spectra contain rich information on a small section of
a protein. The information on the sequence of each peptide
enables the identification of a protein from a single peptide.
This allows searching of databases that contain incomplete
gene information, for example, expressed sequence tags
(ESTs). The use of peptide fragmentation mass spectra is
also the method of choice for identifying complex protein
mixtures. There are several approaches to using peptide
fragment information for protein identification.

PepSea [31] (http://pepsea.protana.com/PA_Peptide
PatternForm.html) uses information from fragmented pro-
teolytic peptides. First, a peptide sequence tag has to be

extracted. A peptide sequence tag is a short partial amino
acid sequence of a proteolytic peptide together with infor-
mation of the mass of the peptide and the masses of the
parts of the peptide that have not been sequenced. This
approach is very fast but requires extraction of the peptide
sequence tag prior to searching. 

SEQUEST [32,38–40] uses data from un-interpreted pep-
tide fragment mass spectra (i.e. the information from the
whole mass spectrum is used). A cross-correlation function is
calculated between the measured fragment mass spectrum
and the protein sequences in the database. The cross-corre-
lation function is used to score the proteins in the database.
SEQUEST supports the use of information from several
fragment mass spectra in the database search. This approach
does not require extraction of any information from the mass
spectra but the searches are time consuming.

PepFrag [24] (http://www.proteometrics.com/prowl/
pepfragch.html) and MS-Tag [26] (http://prospector.ucsf.
edu/ucsfhtml3.2/mstagfd.htm) use peptide fragment
mass information in combination with other mass spec-
trometric information, such as amino acid composition,
to identify proteins. 

Mascot [35] (http://www.matrixscience.com/cgi/search_
form.pl?SEARCH=MIS) uses the same probability-based
scoring algorithm for fragment information as for peptide
maps. It also supports the use of information from several
fragment mass spectra in the database search.

Quality of search results
The software tools for protein identification using mass
spectrometric information will give a top-ranking candidate
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Simulations provide a method for determining the quality of the search results [41••].



even if all the matching peptides are random matches. It is
important to determine the quality of the identification,
that is, what the probability is that the identified protein is
a false positive [35,36,41••]. 

One method for assessing this is by using simulations [40]
(Figure 4). In the simulations, protein sequences were ran-
domly selected from a protein sequence database, digested
according to the specificity of an enzyme, a single peptide
was randomly chosen, and its mass calculated and stored.
This procedure was repeated and a theoretical mass spec-
trum was constructed. This theoretical mass spectrum was
then used in a database search and the top score was saved.
The protein sequence with the highest score was in nearly
all cases a false positive, that is, the peptide matches were
random. These searches were repeated with different the-
oretical mass spectra and a distribution of scores for
random identification was obtained. Subsequently, the dis-
tribution of scores for random identification can be used to
assess the quality of the results when experimental data is
used in a database search, that is, each protein candidate in
the list can be associated with a probability for it being a
false positive. Other methods are attempts at directly cal-
culating the probability that the masses observed in a mass
spectrum would correspond to proteolytic peptides from a
protein sequence [35,36]. The direct calculations are, how-
ever, less reliable than the simulation because it is
necessary to make approximations because of the com-
plexity of the process.

Objective methods for assessing the quality of search results
have become more important as high-throughput proteome
analysis is becoming more widespread [36,42–44]. 

Conclusions
The software tools for protein identification have matured
and the algorithms have been refined to give higher selec-
tivity and sensitivity. High-throughput analysis has
become increasingly common in proteome projects and
requires automatic analysis of the mass spectrometric data.
An important part of automation is quality control and
therefore development of methods to determine the qual-
ity of the search results has become a focus. 
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