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A model of random mass-matching and its use
for automated significance testing in mass
spectrometric proteome analysis

A rapid and accurate method for testing the significance of protein identities deter-
mined by mass spectrometric analysis of protein digests and genome database
searching is presented. The method is based on direct computation using a statistical
model of the random matching of measured and theoretical proteolytic peptide
masses. Protein identification algorithms typically rank the proteins of a genome data-
base according to a score based on the number of matches between the masses
obtained by mass spectrometry analysis and the theoretical proteolytic peptide
masses of a database protein. The random matching of experimental and theoretical
masses can cause false results. A result is significant only if the score characterizing
the result deviates significantly from the score expected from a false result. A distrib-
ution of the score (number of matches) for random (false) results is computed directly
from our model of the random matching, which allows significance testing under any
experimental and database search constraints. In order to mimic protein identification
data quality in large-scale proteome projects, low-to-high quality proteolytic peptide
mass data were generated in silico and subsequently submitted to a database search
program designed to include significance testing based on direct computation. This
simulation procedure demonstrates the usefulness of direct significance testing for
automatically screening for samples that must be subjected to peptide sequence ana-
lysis by e.g. tandem mass spectrometry in order to determine the protein identity.
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1 Introduction

Proteome projects are expected to emerge [1] in the wake
of completed genome projects [2–6]. State of the art pro-
teome analysis typically involves protein separation by
2-D gel electrophoresis followed by protein identification
based on mass spectrometry (MS) peptide mapping and
genome database searching [7–9]. High throughput and
extensive automation [10, 11] are highly desirable fea-
tures of systems for proteome analysis. Robot-handled
gel spot excision, in-gel protein digestion, and sample
preparation for MS analysis can follow the rapid com-
puterized read-out of protein expression levels on a gel.
Automated assessment of the quality of each identifica-
tion result will become critical in any system for proteome
analysis with limited human intervention. We present here
a rapid computational tool for solving the problem of
automated quality assessment of protein identification
results obtained by MS analysis of protein digests. The

tool performs a significance test and is based on a model
that describes in detail the phenomenon of random
matching that can lead to false identification results.

Protein identification based on MS of a protein digest [12–
18] assumes that a pattern of proteolytic peptide masses
provides a “fingerprint” of a particular protein and that the
fingerprint can be recognized when searching a genome
database. The protein digestion is usually done with a
proteolytic enzyme having high digestion specificity (e.g.
trypsin). Identification algorithms compute the number of
matches between peptide masses from the experiment
and the peptide masses from individual proteins in a data-
base, assuming that each protein in the database is
digested by the same enzyme as was used in the experi-
ment. A score is used to rank the database proteins. In
some algorithms, the score is simply the number of
matches [19], whereas in other algorithms the score is
the result of a computation based on the number of
matches [13, 20]. The protein or proteins with the best
score is (are) identified. There is a risk of obtaining a false
identification result, because each mass determined by
MS has an error, ��m, and can match several proteolytic
peptides of various proteins in the database. We refer to
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the matches with proteins that are not present in the sam-
ple as random matches. A modified peptide will yield ran-
dom matches only. A false result is obtained when the
score due to random matching is at least as good as the
score of a real protein in the sample. A result is significant
only if the experimental score deviates significantly from
the scores that can be expected from false results. Test-
ing of the significance of a result can be performed only if
the score frequency function (distribution of scores) for
random results has been established for the particular
data and database search constraints of the experiment.

We have demonstrated previously the method of using
simulations to estimate frequency functions, f(S), for ran-
dom protein identification [21]. That method involves two
steps: (1) generation of many different random proteolytic
peptide maps from a genome; and (2) simulation of pro-
tein identification by searching a genome database and
using the random proteolytic peptide maps as data. A
simulation with a set of different random peptide maps
with the same number of masses yields f(S) for random
protein identifications characteristic for that peptide map
size and other constraints used in the database search.

Here, we derive a model of the random matching of mea-
sured and theoretical peptide masses and employ this
model to compute score frequency functions, f(S), for ran-
dom protein identifications when using an algorithm that
ranks proteins according to their number of matches. The
model computations elucidate the nature of the process
of random matching and always take into account fea-
tures of each individual peptide map, genome database,
and database search constraints. The method presented
here provides a much faster and also a more accurate
means of computing f(S) compared with the method of
simulation. We demonstrate that the rapid and accurate
model computation provides a useful tool for automated
testing of the significance of protein identification results.

2 Materials

Three different genome databases were employed:
Haemophilus influenzae, Saccharomyces cerevisiae, and
Caenorhabditis elegans, containing respectively 1718,
6403 and 19 100 (May 2000 release) ORFs. Protein diges-
tion was performed in silico assuming exposure to trypsin
(trypsin cleaves with high specificity at the carboxyl side
of lysine and arginine residues). Only tryptic peptides
with a mass between 800 Da and 4500 Da were consid-
ered. Scripts written in Perl were employed for all com-
putations, which were performed on Dell Optiplex GX1
(550 MHz Pentium III) or Dell Precision 210 (500 MHz Pen-
tium III) personal computers.

2.1 Model

A model that allows direct computation of frequency
functions describing the scores (number of matches) of
randomly identified proteins must describe accurately
the process of random matching of measured and
theoretical peptide masses. Therefore, a model must
be designed to take into account specific information
about the database proteins and their proteolytic pep-
tides.

2.1.1 Protein size

Others and we have noted that identification algorithms
that rank proteins according to their number of matches
tend to favor large proteins [13, 21 and Roepstorff, per-
sonal communication]. Figure 1 (left, top panel) displays
the mass distribution of the proteins in a genome data-
base compared with the mass distribution of the pro-
teins identified in simulations using random proteolytic
peptide maps and ranking by the number of matches.
The preference for random identification of high mass
proteins is clear, which indicates that the protein size is
a key quantity in the description of random matching.
The protein mass, Mp, correlates with the theoretical
number, ku, of proteolytic peptides that a protein in a
database can yield (Fig. 1, right, top panel). The spread
of ku values around a given value of Mp reflects the influ-
ence of the protein sequence (e.g., some membrane
proteins yield very few tryptic peptides). The distribution
of ku-values of the proteins in a database depends on
the maximum number, u, of missed cleavage sites
assumed (Fig. 1, left, bottom panel). It is seen in Fig. 1
(right, bottom panel) that proteins that can yield many
proteolytic peptides dominate the random matching.
In order to model the sequence-dependence appro-
priately, we use the quantity ku in the description of
random matching.

2.1.2 Peptide mass distribution peaks

Proteolytic peptide masses in a genome database are
distributed in discrete clusters or peaks due to the
almost integral values of the masses of the atoms (C, H,
N, O, S) from which the peptides are composed [22]. We
will henceforth refer to these clusters as peptide mass
distribution peaks. The widths of the peptide mass dis-
tribution peaks increase with increasing mass (Fig. 2).
For unmodified peptides of mass � 4500 Da determined
to an accuracy better than � 0.25 Da, the random
matching always occurs within a single mass distribution
peak.
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Figure 1.

2.1.3 Peptide mass frequencies

The frequency of proteolytic peptides in a genome data-
base decreases with increasing mass. Hence, the higher
the mass the lower the number of proteins in the database
that can match randomly a measured proteolytic peptide
mass within the mass accuracy ��m (Fig. 3).

2.1.4 Mass regions

The frequency of proteolytic peptides within the error of a
mass measurement varies with mass as illustrated by
Figs. 2 and 3. The variable frequency hinders a simple
statistical description of random matching that directly
covers the entire mass range of proteolytic peptides. We
approached this problem by assuming that the mass
range can be divided into a finite number, q, of proteolytic
peptide mass regions and that within each region, i, fre-
quencies of proteolytic peptides are approximately con-
stant. We can thereafter obtain a statistical description of

Figure 2.

the random matching over the entire mass range by com-
bining appropriately the probabilities of the number of
random matches computed for each mass region.

2.1.5 Probabilities

A defined proteolytic peptide mass region, i, contains
(mi�1 – mi) mass distribution peaks between the masses
mi and mi�1. We assume that the fraction fi of the proteo-
lytic peptides from an individual protein that on the aver-
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Figure 3.

age falls into i can be estimated from the fraction of the
total number of proteins in the database yielding peptides
within i (Fig. 3). Knowing fi, the probability, pi, that a pro-
teolytic peptide from a particular protein characterized by
ku will be found in a single randomly chosen peptide mass
distribution peak in region i can be computed as:

pi � f i
ku

mi�� �mi
(1)

The probability, p�i, of finding a proteolytic peptide origi-
nating from a particular protein characterized by ku within
a region ��m around a randomly chosen proteolytic pep-
tide mass m is:

p�
i � pi� �i��m� (2)

where � (i, �m) denotes a function that depends on the
shape of the (peptide) mass distribution peak and i refers
to a (peptide) mass region � (i, �m) can be interpreted as a
statistical measure of the fraction of the proteolytic pep-
tide masses of a peptide mass distribution peak that can
be found within ��m from a randomly chosen peptide
mass. The derivation of � (i, �m) is described in the
Appendix.

The probabilities, pi�, computed for all mass regions, i, can
be employed to compute a total probability, p(k), for an
individual protein in the database to match randomly k
out of nmasses, where the nmasses refers to the number
of proteolytic peptide masses in the mass data (proteo-
lytic peptide mass map).

p�k� �
�

ki �
�

ki�k

n1�

k1� n1 � k1� ��p
�
1
k1 1 � p�

1

� �n1�k1

�

n2�

k2� n2 � k2� ��p
�
2
k2 1 � p�

2

� �n2�k2 � � � (3)

na�

kq� nq � kq� ��p
�
q
kq 1 � p�

q

� �nq�kq
�

where q denotes the number of mass regions, n1 denotes
the number of masses in the mass data that are in mass
region 1, n2 denotes the number of masses in the mass
data that are in mass region 2 etc., and ki, where i = 1, 2,
. . ., q, denotes the number of matches in mass region i.
The values of ki are all combinations of values that apply
to the constraint

�
i
ki � k.

2.1.6 Frequency functions

The knowledge of p(k) for a particular experimental con-
dition, provides a method of generating a frequency func-
tion of scores (number of matches) for random identifi-
cations of proteins. Since the random matching is domin-
ated by proteins that have large ku values (Fig. 1), we can
simplify the computation by using a subpopulation of
database proteins having large ku values. The frequency
function is denoted f(S), where S is a score (number of
random matches). With S = k�,

f S� � � �k�
kk�0

p k� �
	 
H

� �k��1

k� 0
p k� �

	 
H

(4)

where H is the number of proteins in the subpopulation.

The formal derivation of Eq. (4) is given in the appendix.
We found by inspection of results from simulations of ran-
dom protein identification and by iterated use of Eq. (4)
that a good agreement between simulated and computed
f(S) is obtained if the size, H, of the subpopulation is equal
to the number of proteins in the database having ku values
corresponding to at least 70% of the maximum ku value in
the database (for a particular number of allowed missed
cleavage sites and a particular assumed maximum pro-
tein mass) and if the median ku value (0.85 � ku

max) in the
subpopulation is used as an approximate representative
ku value for all the H members of the subpopulation.

2.1.7 Critical score and significance testing

The frequency function, f(S), for random identification
results is the basis for testing the significance of an
experimental identification result characterized by a score
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SE. Employing SE as the test variable, the hypothesis H0:
“the result is random”, is rejected at the significance level
�, if SE � SC. SC is referred to as the critical score and is
derived from the relation:�
S�SC

f S� � � � (5)

� is chosen prior to the significance test [23] and repre-
sents the test error risk or the statistical risk that the
hypothesis H0 is rejected although it is actually correct.
� should be small and often either of the values 5%, 1%,
or 0.1% are used [24]. f(S) or SC must be known for the
particular conditions of a given experiment, since their
magnitudes depend on all pertinent experimental con-
straints (number of mass peaks, mass accuracy, etc.).

3 Results

3.1 Comparison of computed and simulated
frequency functions and critical scores

Each frequency function obtained by using Eq. (4) is data
dependent, since the probabilities computed depend on
the numbers ni describing how many of the n masses in a
map that fall into each respective mass region i. In con-
trast, the simulation approach typically yields a frequency
function based on all the different (typically �1000) ran-
dom tryptic peptide maps employed [21]. In order to com-
pare the frequency functions and critical scores generated
by Eq. (4) with those generated by simulations, we com-
puted averages of probabilities computed when using
�100 different distributions of ni, where each value of ni

was randomly chosen under the constraint�ni =n. Results
obtained by simulations and results obtained by averaging
over a large set of computations agree well (Fig. 4).

The use of a simulated frequency function as a basis for
significance testing will yield an accurate result as long as
the experimental peptide map has approximately the
same mass distribution as that in the whole database
(Fig. 3). However, the mass distribution of individual pep-
tide maps can sometimes deviate strongly from the
expected overall mass distribution. Figure 5 shows simu-
lated and computed frequency functions for three different
cases, where in two cases the masses in the maps have
been restricted and differ from the average mass distrib-
ution. In case (1) all the masses in the maps (each with 20
peptides) are between 1396 Da and 4500 Da. In case (2)
the entire mass range 800 Da to 4500 Da is used and in
case (3) all the masses are between 800 Da and 1396 Da.
The frequency functions for the three cases display clear
differences. For example, the critical scores correspond-
ing to the 0.1% significance level are in the cases (1), (2)
and (3): 8, 10 and 11 matches respectively. To perform

simulations for every possible distribution of masses in an
individual peptide map in addition to all other variable con-
straints is time consuming, whereas the model compu-
tation takes the peptide mass distribution as well as all
other constraints into account in a direct and rapid way.

3.2 Automated significance testing

In order to demonstrate the concept of direct automated
significance testing, the model-based testing of signi-
ficance was directly implemented into a protein identifi-
cation algorithm that ranks proteins according to their
number of matches. The performance of the automated
significance testing was investigated by simulating a set
of protein identifications, where in each map a fraction of
the masses originated from a single randomly chosen
protein (correlated masses) and the rest of the masses
were each from a different protein (noncorrelated). In
each map, a different randomly chosen protein was
employed to generate the correlated masses, which
were randomly chosen and corresponded to a randomly
chosen protein sequence coverage in the range 15–65%.
Figure 6 displays the results for protein identification
based on maps with 35 peptide masses for the organism
S. cerevisiae. It is seen in Fig. 6 that the significance test-
ing efficiently rejects false results. However, also a frac-
tion of the true results are discarded by the significance
test. As a lower frequency of false results is tolerated,
more true results become nonsignificant.

4 Discussion

4.1 Discarded results

In an automated system for proteome analysis, the results
that do not pass the significance test must be analyzed
further. A common way of obtaining further constraining
information is to perform tandem mass spectrometry
(MS/MS), whereby a single ion species is isolated and
fragmented in the mass spectrometer [24–26]. Mass ana-
lysis of the resulting fragment ions can yield highly con-
straining sequence information. MS/MS is more time con-
suming than is peptide mass mapping. We envision that in
order to maximize throughput, sensitivity and quality, the
automated significance testing can direct the proteome
analysis system to the samples that need MS/MS analysis.

4.2 Computational accuracy and speed

We have stated above in Section 3.1 that the model
based computation of the frequency function needed for
significance testing is more accurate than that resulting
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Figure 4.

from a simulation, provided that simulations are not per-
formed for any given distribution of masses in a peptide
map. In a practical application, not only the accuracy is
important, but also the time it takes to obtain the result.
We will therefore discuss briefly what is the computation
time and what pertinent factors are influencing the com-
putation time. Frequency functions are computed by sol-
ving the Eq. 3 and 4. In the computations of frequency
functions and critical scores shown in Figs. 4 and 5

respectively, we divided the tryptic peptide mass range
(800 Da–4500 Da) into four mass regions. Figure 7 dis-
plays a comparison between the use of 2, 4 and 8 mass
regions in the model computations. It is seen that
the agreement between simulation and computation
improves with an increasing number of mass regions.
However, the agreement is very good already at the use
of four mass regions. The computations become slower
with an increasing number of mass regions due to the
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Figure 5.

increasing number of terms in Eq. (3). With our current
software and computers, a single frequency function
(which is all one needs in a practical application) takes
0.003 to 4 s to generate (n = 5–80) by direct computation
when using four mass regions, whereas with eight mass
regions the corresponding numbers are 0.008 to 10 s. It
takes about 1000 s to derive a frequency function by
simulation (using a program written in C [21]). The Perl
scripts employed here for testing the model computation
concept are not optimized with respect to computational
speed. The general use of more than four mass regions in
the computations can be facilitated by implementing the
model in a compiled code such as C, which would
according to our experience speed up the computations
by a factor ��10, hence yielding computation times ��1 s
for any significance test.

Figure 6.

4.3 Generalization and other applications
of the model

The detailed and specific information on the model
described in Section 2.1 refers to mass data from tryptic
digests of proteins that originate from a known species
that is assumed to have a correctly and completely
sequenced genome. However, our model of the random
matching between measured masses and theoretical
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Figure 7.

masses calculated from sequence information stored in a
database is general and not limited to proteins and tryptic
digests, since the model only employs quantities that can
be derived for any molecule with a defined sequence. The
model presented here can also serve as a basis for the
development of new protein identification algorithms that
appropriately take the process of random matching into
account in the ranking of database molecules. The strate-
gies of the development of such algorithms will be the
subject of a separate paper (Eriksson and Fenyö, in pre-
paration).

5 Concluding remarks

We have demonstrated that rapid and accurate signifi-
cance testing of mass spectrometric protein identification
results can be performed by applying computations
based on a simple statistical model that describes the
process of random matching underlying false (random)

protein identification results. The model-based approach
to significance testing facilitates proteome analysis sys-
tems operating without human intervention.
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Appendix

Derivation of �(i, �m)

The function �(i, �m) employed in Eq. (2) was derived in
the following way: A mass distribution peak was chosen
at 800 Da (the lowest mass considered in our model). The
total number of masses in the peak was computed. A
mass within the mass distribution peak was randomly
chosen. The number of proteolytic peptides within ��m
of that mass was counted and stored. The process begin-
ning with randomly choosing a mass within the peak was
performed 100 times. � (i, �m) was computed as the aver-
age number of matching masses divided by the total
number of masses in the peak. The entire procedure was
repeated for every 20th peptide mass distribution peak, up
to the maximum mass considered (4500 Da). The result of
this procedure is displayed in Fig. 8. The procedure was
repeated for the mass accuracies: 0.2, 0.1, 0.03, 0.01,
0.003 and 0.001 Da. The mean values of � (i, �m) on
each mass region (typically the four regions: 800–1045,
1046–1396, 1397–2055, 2056–4500) were computed and
employed in our computations (Eq. (4)). The dependence
of � (i, �m) on mass accuracy is displayed in Fig. 9, where
a least-squares-fit of a function of the type shown in Eq.
A1 to the computed data-points results in the parameters
a1 = 0.0598, b1 = 1.215, a2 = 0.0726, b2 = 1.225, a3 =
0.0844, b3 = 1.186, a4 = 0.1159, b4 = 1.207, for the four
mass regions mentioned above.

� i��m� � � 1 � exp � �m
ai

� �
bi

� �
(A1)

Derivation of f(S)

Equation (4) assumes a protein-population with H mem-
bers ranked by their number of matches with random
(noncorrelated) peptide masses in a proteolytic peptide

map. The resulting frequency (relative frequency) func-
tion, f(S), given in Eq. (4) is identical to a probability, P(k�),
that at least one protein would yield exactly a score S = k�
random matches and that the rest of the proteins yield
scores S � k� random matches. Hence, Eq. (4) describes
the probability that the protein or proteins characterized
by the score k� would be given the highest rank and
hence considered as the identification result. P(k�) can be
expressed as:

P(k�) = P(“at least one protein yield(s)
S � (k� – 1)”) – P(“at least one protein (A2)
yield(s) S� (k�)”)

The outcome complementary to “at least one protein
yield(s) S � (k� – 1)” is: “all proteins yield S � (k� – 1)”.
Using the law of probabilities of complementary out-
comes yields:

P(k�) = {1 – P(“all proteins yield S� (k� – 1)”)}
–{1 – P(“all proteins yield S � (k�)”)}= (A3)
= {P(“all proteins yield S� (k�)”)}
– {P(“all proteins yield S � (k� – 1)”)}

Knowing the probability

P(“a protein yields S� (k�)”)
�k�
k�0

pp k� ��

and, assuming that the score of one protein is indepen-
dent of that of another protein, we rewrite Eq. (A3) for H
proteins as:

P k�
� � � f S � k�

� � � �k�
k�0

p k� �
	 
H

�
�k��1

k� 0

p k� �
	 
H

, which

is identical to Eq. (4).

Figure 8. Figure 9.
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