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This paper investigates the use of survival functions and
expectation values to evaluate the results of protein
identification experiments. These functions are standard
statistical measures that can be used to reduce various
protein identification scoring schemes to a common,
easily interpretably representation. The relative merits of
scoring systems were explored using this approach, as
well as the effects of altering primary identification pa-
rameters. We would advocate the widespread use of these
simple statistical measures to simplify and standardize
the reporting of the confidence of protein identification
results, allowing the users of different identification
algorithms to compare their results in a straightforward
and statistically significant manner. A method is described
for measuring these distributions using information that
is being discarded by most protein identification search
engines, resulting in accurate survival functions that are
specific to any combination of scoring algorithms, se-
quence databases, and mass spectra.

Protein identification has become an important application of
mass spectrometry to biological research.1-3 These identifications
are based on the comparison of an experimentally determined
list of masses and a database of protein (or translated nucleotide)
sequences. These masses can be a list of parent ion masses or a
list of fragment ion masses derived from a parent ion by tandem
mass spectrometry. This paper will address the results from
tandem mass spectrometry experiments, but the arguments and

findings may also be applied to protein identifications obtained
by simple mass spectrometry.

Numerous algorithms are available that allow a user to enter
a parent ion mass, a list of fragment ion masses, and search
parameters that are used to find the peptide sequence in a
sequence database that most closely matches those masses, given
the search parameter set.4 The matching is based on the known
peptide bond fragmentation reactions.5 These algorithms can be
separated into two general classes: those that require interpreta-
tion of the mass list (class A) and those that require no
interpretation (class B). Class A algorithms require the manual
or automated determination of one or more stretches of unam-
biguous sequence by “de novo” sequencing methods.6,7 The
database search can then be performed with the knowledge that
this sequence should be present in any matching peptide. Class
B algorithms do not require the discovery of any sequence before
a search is performed.8,9 Class B algorithms compare all of the
masses on the list with all peptide sequences. The parent ion mass
is commonly used to limit the number of potential sequences
considered. Both types of algorithms have advantages and
disadvantages, but either type can be used to effectively identify
protein sequences.

All of these algorithms calculate a “matching score” that is
used as a measure of how closely a given peptide sequence
matches the masses. Examples of these scores are correlation
factors,8 the number of ions that match a peptide sequence,9

k-similarity statistics,10 and calculated probability factors.7 The
score is dependent on the number and relative intensity of
sequence-specific ions present in the mass list and the algorithm
parameters used for the particular calculation.

Theoretical Interpretation of Peptide-Spectrum Matching
Scores. In a typical protein identification experiment, a protein
identification algorithm will be used to prepare a list of spectrum-
to-peptide matching scores. The list is then presented to the
investigator with the potential peptide sequences listed in order
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of decreasing score. Comparing the scores produced by any of
the commonly available software packages on any basis other than
the relative rank of a particular peptide in the list of peptides is
difficult. As a result, practitioners of protein identification have
evolved sets of rules that they apply to identifications in addition
to the peptide rank and score to determine the validity of a protein
identification. For the purposes of this discussion, a peptide
sequence that is the same as the sequence of the real peptide
that generated a particular tandem mass spectrum will be referred
to as the “valid” sequence for that spectrum. All other peptide
sequence assignments to a mass spectrum will be referred to as
“stochastic”.

One commonly used method to assess the validity of an
assignment is to carefully examine the mass spectrum and
determine how many of the ions were matched with the sequence.
The user then uses his intuition and experience to determine
whether the pattern of sequence ions assigned corresponds to a
“reasonable” identification. The mass spectrum is also inspected
to determine the signal-to-noise ratio of the data: high scores can
be produced by purely stochastic assignments if there is a large
amount of noise in the spectrum. This type of evaluation cannot
be automated, and it depends on the skill of an individual to
correctly interpret a complex set of patterns with an understanding
of the instrumentation used to produce the original data.

Another strategy for determining the quality of a match to a
particular peptide is to compare the ranked lists obtained from
different algorithms. The user then applies some set of heuristic
rules to compare the ranks of the peptides in the resultant lists.
The simplest example of this approach would be to assume that
if a peptide is top ranked by two algorithms, it may be assumed
to be a correct assignment. This strategy is based on the
assumption that different algorithms produce matches via methods
that are sufficiently different that the highest scoring peptides
resulting from stochastic matches to the data will be ranked
differently by the algorithms, while peptides that are valid matches
to the data will be ranked similarly. There is no reason to believe
that this assumption is true. The opposite is probably true: both
stochastic and valid assignments are likely to be similarly ranked
by any two algorithms in the same class. Any two algorithms
within a given class are based on similar assumptions, even though
the details of the scoring system may be different. The practitioner
is forced to use sets of algorithms that give similar results for
trial spectra, which indicates that the algorithms must be formally
equivalent to some degree. This formal equivalence means that
comparing peptide rankings between equivalent algorithms to
determine the quality of an assignment will lead to frequent
nonvalid stochastic assignments.

A difficulty in comparing the scores resulting from different
algorithms is that they do not necessarily have any physical
interpretation. A good scoring system does not necessarily have
any theoretical foundation: it is judged as good if it scores valid
sequences significantly different from all other sequences. There-
fore, any practically useful comparison between scores should be
a statistic that can be applied to a variety of scoring systems and
has a simple interpretation that is relevant to protein identification
experiments.

A statistic that has these properties and that has found wide
acceptance in bioinformatics is the expectation value.11-13 An

expectation value can be defined for any valid scoring system that
has the characteristic of the score being a maximum when a valid
match is obtained. Let x represent a score for a mass spectrum
S; then the survival function, s(x), for a discrete stochastic score
probability distribution, p(x), can be defined:14

where Pr(X > x) is the probability that the spectrum’s score will
have a value greater than x by random matching with sequences
in a particular database, D, and pj(x) is the discrete probability that
best corresponds to a score of x. The expectation value e(x) for S
on D is then defined as

where n is the number of sequences scored. The expectation value
has the following simple interpretation: given S and D, e(x) is
the number of peptides that would be expected to have scores of
at least x. For example, if a score x0 has an expectation value e(x0)
) 10, then one would have a score of at least that value 10 times
for every replicate of the experiment. An expectation value e(x0)
) 1 × 10-6 implies that the experiment would have to be repeated
1 million times before a score that high would be obtained by
chance. Alternately, e(x0) ) 1 × 10-6 could be interpreted as the
requirement that the sequence database searched would have to
contain 1 million times as many sequences to obtain a score that
high by chance.

These statistics can be applied to any type of scoring system
for all of the peptide sequences that fit the primary parameters of
a search. A primary search parameter that is common to all
current scoring systems is the absolute value of the deviation, d,
between the observed parent ion mass (m) and the calculated
mass of a peptide sequence (mc)

All sequences that do not fall within the appropriate d range
specified for a search are not considered (x ) -∞).11 This type of
scoring is used in all tandem mass spectrometry identification
schemes in common use currently, although there is usually no
explicit score associated with sequences that do not have an
appropriate intact mass. This scoring has the advantage of
speeding up the calculation, because simply screening the parent
ion mass removes a sequence from consideration without having
to perform any further calculations.7,8

The only difficulty with applying eqs 1 and 2 to protein
identification scores is that the stochastic probability distribution
p(x) is not readily available in a general, parametrized form. The
distribution can be obtained by Monte Carlo methods, but the
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sj(x) ) Pr(X > x) ) ∑
i)j(x)

∞

pi (1)

ej(x) ) nsj(x) (2)

d ) |m - mc| (3)
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specific distribution applicable to a particular mass list and set of
search parameters (including the sequence database) would be
very time-consuming to calculate for each protein identification
experiment. An alternative approach is to construct a frequency
histogram of all peptide scores while a search is performed.
During a search of a large sequence database, almost all scores
will be the result of a random match: only one (if any) of the
scores will be a valid match. The discrete valued frequency
function f(x) can be converted into p(x) by simple normalization

where N is the number of peptide sequences used to create the
histogram

Applying eqs 1 and 5 makes it possible to estimate p(x) and s(x)
for any scoring system with any combination of data, search
parameters, and sequence. Once s(x) is known, it can then be fit
to an analytical function and its value extrapolated for any value
of x. More importantly for the purposes of this paper, the survival
functions for different scoring systems can be compared to
evaluate their relative merit.

Experimental Determination of p(x) and s(x). All calcula-
tions were performed using modified versions of the database
search engine Sonar.15 Sonar uses vector alignment and spectrum
dot products16 as a method of calculating correlations between
peptide sequences and mass spectra, which are represented as
vectors with high dimensionality.17 The calculation of the dot
product is done in such a way as to also yield detailed assignments
of sequence-specific ions at the same time as the sequence-
spectrum correlation statistics are obtained.

The masses derived from calculating all of the potential peptide
sequence-specific ions (a, b, y, and their corresponding -18 and
- 17 neutral loss products) were represented in a vector P of n
intensities Pi., where n is the mass of the parent ion divided by
the accuracy of mass measurement. Possible ions were repre-
sented by Pi ) 1, and all other values were 0. The spectrum to be
compared was represented as an n point vector I, where the values
of Ii corresponded to the intensity of an observed fragment ion
(normalized to a maximum of 100) or 0 if no fragment ion was
observed. The correlation score (indicated below as system I),
xI, was calculated as follows:

Two alternative scoring schemes (systems II and III, respectively)
were used for comparison: these schemes include extra terms
that account for the number of assigned b or y ions (nb and ny,

respectively),

and

While these additional factors may seem odd initially, consider
the simple question: What is the form of x(ny)/x(ny - 1)? Consider
the case of an 11-residue peptide sequence, P, and two spectra,
A and B, such that spectrum A contains 10 peaks of equal intensity
that can be assigned to y-ions predicted for P, while B contains
only one peak that can be assigned to P. The correlation score
assumes that the score should be a simple linear function of the
number of assignable ions, implying that A is ∼10× better than
B as proof of the existence of P. Intuitively, this relationship is
too weak, as a spectrum with 10 assignable y-ions would be
considered as good an identification as possible, while a single
ion would be considered to have little value as proof. Assuming
an underlying hypergeometric distribution for a valid match, x(ny)/
x(ny - 1) ≈ ny, implying that A would be ∼(10!)× better than B,
as proof of the existence of P. The exponential score would place
the factor at ∼(e10)×. These larger factors are intuitively more
reasonable and have the effect of moving valid scoring events to
higher scores than the predominant stochastic distribution.

The SALSA score (system IV) was included as an additional
scoring scheme: calculated based on the definition of SALSA
scoring:18

where K is the number of detected ions that correspond to
calculated peptide fragment ions and k is the total number of ions
expected from the calculation. If an ion is not detected, the
threshold of detection is used for Ti. As all signals are normalized
to a maximum value of 100, the threshold value was set to 1 for
all spectra considered here. The original description of the scoring
scheme suggested that it was derived empirically from experi-
mental data sets.

MATERIALS AND METHODS
All software was coded in C++, using Microsoft Visual Studio,

version 6. The applications were run using the Common Gateway
Interface on either a single processor Pentium III (600 MHz) or
a single processor Pentium 4 (1.6 GHz) computer, through the
Apache Web Server. All of the searches were obtained by
searching fragment ion spectra against the National Center for
Bioinformatics nonredundant protein sequence database (nr).

A single “real” tandem mass spectrum was selected to use as
an exemplar for the calculation of the distributions below. This
tandem spectrum was chosen from a reversed-phase high-
performance liquid chromatography analysis of a protein tryptic
digest performed on a Thermo-Finnigan LCQ ion trap mass
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spectrometer. The spectrum yielded the same peptide sequence
identification from the commercial spectrum search engines
Mascot and Sonar and that sequence was assumed to be correct
as eight other peptides from the protein (type I human keratin)
were also identified. It should be stressed that the particulars of
the mass spectrum are not important in the context of this paper:
this single spectrum was chosen to be illustrative of the general
approach. It was decided that using a single spectrum would
emphasize the main theme of the paper, which is how to evaluate
the results from a single spectrum when the scoring algorithms
and search parameters were changed.

RESULTS AND DISCUSSION
The application of specialized sequence search engines to mass

spectrometry has become a relatively well established technique
for matching peptide and protein sequences to experimental
results. The core analytical question that underlies much of this
research may be summarized as follows: “Does this mass
spectrum correspond unambiguously with a known protein or
peptide sequence, yes or no?” If the answer is “yes”, the researcher
must then determine some type of confidence measure that the
positive result is not simply a statistical coincidence, but that it is
a valid match.

The range of scoring systems represented by eqs 6-9
underlines the difficulties for the average user in directly interpret-
ing scores derived from tandem mass spectrometry protein
identification search engines. These scoring systems have the
same goal: to minimize the score obtained from stochastic
matches while maximizing the score obtained from valid identi-
fications. They approach the problem using different mathematical
devices, however, making direct comparison of the scores difficult.
It would be convenient to have a purely theoretical form for the
underlying statistical distributions that would allow the directly
calculation of the probability and expectation value for a particular
score. Unfortunately, it is difficult to provide such a theoretical
distribution in practice. There are so many possible parameters
that would affect the distribution that it is not practical to attempt
to model them all and still have an accurate representation of the
experimental situation.

It is possible, however, to experimentally determine these
distributions by accumulating a simple histogram during any
peptide identification calculation. To illustrate this type of calcula-
tion, consider the case where a tandem mass spectrum has been
generated using a peptide of known sequence. Using the formal-
ism and algorithms described above, it is possible to directly
measure the distribution of scores that result from peptides that
do not correspond to the sample peptide that generated a
particular tandem spectrum. This distribution will be referred to
as the “stochastic” distribution, as it represents the scores possible
from peptides with sequences different from the peptide that was
actually analyzed, from a selected sequence database.

The sequence database used is important, as it does not contain
a truly random distribution of peptide sequences. Calculations
performed with truly random peptide sequences may yield results
quite different from those measured from the relevant sequence
database. The sequence database is assumed have the following
properties: (a) it is large (meaning that it has many peptides that
satisfy step 1 below); (b) if redundant sequences occur, the total
number of redundant sequences for any peptide is small relative

to the total size of the database; and(c) all protein sequences
containing the peptide sequence that truly corresponds to the
peptide sample used to generate the tandem spectrum have been
removed.

The stochastic scoring distribution corresponding to a par-
ticular tandem spectrum on a particular database can then be
measured using the following steps:

1. Find all peptides in the selected sequence database that
match the experimental protein cleavage conditions (e.g., peptides
generated by trypsin cleavage) and have parent ion masses within
a selected value of d (eq 3).

2. Calculate the score for all of the peptides found in step 1
using the selected scoring system.

3. Record all of the scores generated in step 2.
4.Construct a histogram of the frequency of the occurrence of

a particular score versus all of the scores collected in step 3.
Figure 1 illustrates the general form of the probability distribu-

tion calculated from the scoring frequency histogram using eq 4.
It is then a simple matter to calculate the survival function, using
eq 1. Some smoothing may be necessary to eliminate the effects
of redundant sequences on the curves: alternately multiple
identical scores caused by redundant sequences can be filtered
out in step 3. Then eq 2 can be used to estimate how often a
particular score would be expected to be found by random
sequence matches. It is possible to assess how high a score
generated from the spectrum and the valid peptide sequence
should be to produce an assignment with a particular confidence
level. Practically, it is very simple to construct the scoring
frequency histogram “on-the-fly” as sequences are being scored,
with very little computational overhead or impact on the overall
performance of a practical scoring engine.

A much more interesting case is one in which the valid
sequence for a particular peptide is not known in advance. The
goal of this exercise is to determine the sequence of the peptide,
rather than simply measure the stochastic distribution. In this
case, condition c for the database cannot be met. If the same
algorithm is applied in this case, conditions a and b on the
database ensure that the majority of the scores recorded cor-
respond to the stochastic distribution and that only a single scoring
value (x*) in the scoring frequency histogram will correspond to
a valid match between the peptide and the tandem spectrum,
regardless of how many times that peptide sequence occurs in
the protein sequence database. A confident identification can be
made if the valid peptide match generates a value for x* in the
“significant” portion of Figure 1. The actual confidence interval

Figure 1. Schematic representation of a stochastic score distribu-
tion, as described in the text. Any peptide corresponding to a score
within the body of the stochastic distribution cannot be confidently
assigned as being a valid identification. A score higher than the right-
hand boundary of the stochastic distribution may be assigned as
potentially valid, with an associated expectation value.
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of that identification can then be measured using the survival
function and expectation value approach.

Figure 2 shows a real example of scoring histograms calculated
using steps 1 to 4 above, a sample tandem spectrum, and the NCBI
nr protein sequence database. The stochastic portion of the
measured distributions is to the left of the histogram, and the
single histogram point corresponding to the valid identified
sequence (score x*) is marked with a diamond. Clearly, x* does
not fall within the stochastic distribution in either case, indicating
that it is unlikely that the match is the result of a stochastic match
(see the previous section for a description of the spectrum and
its valid sequence).

A few general comments can be made about the visual
assessment of this type of histogram. The confidence that a score
represents a valid identification increases as the distance between
the high-scoring end of the stochastic distribution and x*
increases. In the case that poor spectral quality causes a valid
match to fall within the stochastic distribution, there is simply
insufficient information in the mass spectrum to confidently assign
that mass spectrum to a particular peptide sequence. It should
be noted that there is no way to distinguish between the case
where there is insufficient data to positively match a sequence

with a spectrum and the case where the peptide sequence
corresponding to the spectrum is not in the database (or has been
modified in some unanticipated manner).

A much more sophisticated estimate of the confidence of a
sequence assignment can be obtained from the survival function.
A comparison of survival functions derived from the stochastic
portions of the scoring histograms for each of the four scoring
systems is illustrated in Figure 3, using the same spectrum,
conditions, and database as for Figure 2. The arguments used to
justify the use of the maximum formulation of the extreme value
distribution14 (also referred to as the Gumbel distribution) in
sequence similarity scoring11,12 are valid for these scoring systems
and form the basis for the estimation of expectation values
associated with survival functions. Based on this distribution, the
high-scoring portion of a plot of log(s(x)) versus log(x) should be
linear, as is evident from the curves shown. Practically, a smoothed
linear least-squares fit for all data points, log(s(x)) < log(0.1),
allows the estimation of the survival functionsand hence the
expectation valuesfor all x such that s(x) > 0.1. Applying this
extrapolation process to the identification illustrated in Figure 2b,
the expectation value for the point marked with a diamond is e(x*)
) 9 × 10-6. This expectation value can be interpreted as meaning
that a stochastic match of that quality would only be expected to
occur once in ∼105 trials.

Inspection of Figure 2 may be used for the qualitative analysis
of the differences between scoring systems. The value of x*II is
clearly much better separated from the stochastic distribution than
x*I. This enhanced relative separation means that this type of
scoring has the potential to be more sensitive at detecting
sequences in spectra with lower spectral quality. As indicated in
the discussion above, system II scores rely on an additional step
of spectrum interpretation, namely, the assignment of specific
parent ion fragmentation reactions and the addition of that
information to the score in an unbiased manner. The authors’
experience in fully automated commercial and academic protein
identification laboratories has shown this scoring system to be
particularly useful for automating assignments in environments
where it is not practical to have trained analysts refine protein
identification lists manually. It should be noted, however, that the
results of any scoring algorithm may vary depending on the quality

Figure 2. (a) Measured stochastic scoring histogram for a specific
tandem mass spectrum, using the correlation-only scoring scheme,
xI (eq 6). The solid diamond marks the point in the histogram
corresponding to the score for the valid peptide sequence (x*). (b)
Measured stochastic scoring histogram for the same tandem mass
spectrum, using one of the alternate scoring systems, xII (eq 7). The
solid diamond marks the point in the histogram corresponds to the
score for the valid peptide sequence (x*).

Figure 3. Measured survival functions for stochastic probability
distributions using the four different scoring systems (eqs 6-9)
described in the text.
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of the spectra used and the details of the parameters used for the
including or excluding sequences from consideration by a
particular search engine.

Measuring and fitting these distributions makes them practical
for protein identification experiments, rather than using a time-
consuming de novo calculation to derive them (e.g., a Monte Carlo
simulation of the experiment). Based on our implementation of
this method, measuring and fitting these distributions introduces
a calculation overhead of <1%/spectrum. This measurement
method also has the advantage of accurately determining the
distribution appropriate for arbitrary combinations of search
parameters, sequence databases, and mass spectra. This type of
accuracy is difficult to obtain without unacceptable overhead from
a theoretical calculation.

Figure 3 demonstrates how the survival functions can be used
to normalize a scoring system, using the four example scoring
systems described above. By extrapolation, a score of ln(xI) ) 10
has an equivalent interpretation to ln(xI) ) 12 and ln(xIV) ) 5:
the probability of that score or higher occurring at random is 0.01.
Similarly, the interpretation of a score difference between ln(xIV)
) 5 and 7 extrapolates to the difference between ln(xIII) ) 20 and
23: the probability that the score or higher will occur at random
has decreased by 1 order of magnitude. This type of simple
comparison based on a single graph has the additional advantage
of uniquely taking into account the actual distribution of fragment
ion intensities, the mass of the parent ion, the detailed makeup
of the sequence database, and all anticipated sequence modifica-
tions that may have been allowed for in the original search.

A significant consideration in any protein identification experi-
ment is the effect of changing the search parameters on the
significance of the results. Intuitively, the smaller the allowed
range for a parameter, the more significance should be placed
on the best result. The degree to which this aphorism is true has
been difficult to evaluate objectively using raw scores. Application
of the survival function approach allows the quantification of the
degree of benefit conferred by changes in any of the primary
selection parameters. There are a large number of potential effects
caused by changing these parameters, e.g., the number and
identity of potential posttranslational modifications considered, the
fragment ion mass error allowed, or the signal-to-noise ratio of
the spectrum.

Rather than attempt an exhaustive survey of all possible effects,
the effect of varying two such search parameters on the survival
functions measured for a single tandem spectrum using scoring
system II (eq 7) was selected as an example and is shown in
Figure 4. The parent ion mass deviation d and the peptide cleavage
specificity are permuted between two fixed values. The values d
) 2 and the peptide cleavage specificity being trypsin (cleavage
at lysine and arginine residues, except when followed by proline)
represents values commonly using in protein identification experi-
ments. The values d ) 100 and no peptide cleavage specificity
(cleavage at all residues) represent extreme conditions that are
not commonly used. It has been the general perception of many
in the field that such nonrestrictive parameter values have the
potential to significantly affect the reliability of the results, masking
valid matches. The use of nonrestrictive parameters also may
dramatically increase the amount of time necessary for the
identification calculation, e.g., an identification that uses nonspe-

cific peptide cleavage will take ∼10 times longer to calculate than
one that that only considers tryptic peptides.

Figure 4 demonstrates that varying these parameters has little
effect on the overall form of s(x). Comparing the results of one
cleavage chemistry, varying d only results in a minor change in
the slope of the plot. The difference in the survival functions for
changing the cleavage specificity from trypsin to no specificity is
more significant. The effect of altering the primary search
parameters can be easily quantified by examining the values of
the survival function and expectation value x* (Table 1). It should
be noted that ln(x*) ) 30.5 for the valid score, which is unaffected
by the choice made for d.

The survival function/expectation value calculations suggested
above make drawing statistical inferences from large data sets
routine exercises. As an example, take the task of analyzing a set
of tandem mass spectra collected over the course of a liquid
chromatography separation, with the goal of determining what
protein sequences were represented in the original sample by
identifying the peptide sequences from mass spectra. In this case,
the confidence interval to calculate would be the confidence that
the protein was present, rather than simply the confidence that
individual peptides were present. A simple method to evaluate
the expectation value for the protein, based on the individual
expectation values for the peptides, requires only a slight refine-
ment of the methods presented. The results of searching the
appropriate sequence database with the complete set of tandem

Figure 4. Survival functions measured for different search param-
eters, using scoring system xII (eq 7). The symbol d represents the
allowed deviation of the observed parent ion mass from the calculated
mass of a peptide sequence (eq 3). The sequences were generated
from intact protein sequences by assuming either cleavage with
trypsin (lysine or arginine, except when followed by proline) or
cleavage at any peptide bond.

Table 1. Comparison of Estimated Survival Function
and Expectation Values for Valid Scores (x*) Using
Scoring Scheme xII (Eq 7) in the Experimental Data
Shown in Figure 4

parameters log(s(x*)) log(e(x*))

d ) 2 (trypsin) -12.0 -4.6
d ) 100 (trypsin) -11.7 -4.6
d ) 2 (any) -11.5 -4.1
d ) 100 (any) -11.3 -3.8
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mass spectra would be a series of potential peptide assignments,
each with an associated expectation value. By setting a confidence
limit threshold requiring that only peptides with e(x*) < ethres <
1 were to be considered, a subset of these assignments with the
greatest likelihood of being valid would be created. By definition,
such assignments would be rare and their stochastic occurrence
would be governed by the Poisson distribution. Therefore, if there
were M spectra collected during the analysis, the stochastic
chances of e(x*) < ethres is M1/2 times greater than if a single
measurement was made. Generalizing this relationship to multiple
peptide assignments, the expectation value for the protein (Epro)
based on the experimental results would be given by the following
expression

where there are n valid peptide assignments contained in the
protein sequence of interest, each with each peptide i having a
characteristic expectation value and score.

CONCLUSIONS
The results of this paper suggest that the following steps may

be used to reduce any well-behaved protein identification scoring
system to an expectation value formulation for comparison with
other systems.

1. Create the distribution p(x) for each specific identification
experiment, preferably experimentally by the methods described.

2. Calculate s(x) from p(x).
3. Fit the high-scoring portion of s(x) to a model distribution.
4. Use the fitted function to extrapolate s(x) to the desired score

and convert the extrapolated value to e(x).
The results shown and two years of practical experience using

survival functions and expectation values to evaluate protein
identification experiments have shown that this approach is
valuable for automated, high-throughput experiments. They have
also proved valuable in assessing the relative merit of scoring
systems and evaluating the effects of altering primary identification
parameters. We advocate the widespread use of these simple
statistical measures to simplify and standardize the reporting of
the confidence of protein identification results, allowing the users
of different software to compare their results in a straightforward
and statistically significant manner.
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