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This paper described a simple heuristic method for determining the merit of a set of peptide sequence
assignments made using tandem mass spectra. The method involved comparing a prediction based
on the known stochastic behavior of a sequence assignment algorithm with the assignments generated
from a particular data set. A particular formulation of this comparison was defined through the
construction of a plot of the data, the rho-diagram, as well as a parameter derived from this plot, the
rho-score. This plot and parameter were shown to be able to readily characterize the relative quality of
a set of peptide sequence assignments and to allow the straightforward determination of probability
threshold values for the interpretation of proteomics data. This plot is independent of the algorithm or
scoring scheme used to estimate the statistical significance of a set of experimental results; rather, it
can be used as an objective test of the correctness of those estimates. The rho-score can also be used
as a parameter to evaluate the relative merit of protein identifications, such as those made across
proteome species taxonomic categories.
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1. Introduction

The determination of the proteins present in an experimental
sample using tandem mass spectrometry has become an
important technology in protein biochemistry and proteomics.1

The most commonly used method for identifying the proteins
present in a sample involves the use of enzymatic proteolysis
to generate a set of peptides from the constituent proteins.
These peptides are then separated from one another using one
or more chromatographic steps, and then, the separated
peptides are introduced into a tandem mass spectrometer and
ionized. The masses of any peptides produced by the ion source
are then measured, and each population of peptides is frag-
mented by collision with gas molecules or through a chemical
reaction, generating a set of fragment ions that are dependent
on the peptide’s amino acid sequence. This operation of
measuring fragment ion spectra is usually repeated for parent
ion in the chromatogram that matches certain requirements,
such as exceeding a sure-defined intensity threshold. A set of
fragment ion mass spectra is generated that ideally should
contain sufficient information to determine which proteins
were present in the initial mixture. Over the course of the last
10 years, mass spectrometrists and chromatographers have
worked to steadily improve the reliability of this data-taking
exercise, resulting in instruments with the capacity to take more

numerous (and more accurate) fragment ion mass spectra from
a given protein sample.

At the same time, as the instruments for acquiring the data
necessary to identify proteins has improved, a significant
amount of progress has been made on the algorithms and
software implementation necessary to reduce the raw tandem
mass spectra into a set of correlations between these spectra
and the list of protein sequences known to be potentially
expressed by the organisms relevant to a particular study. These
algorithms were developed based on the initial ideas associated
with the automated annotation of fragmentation mass spectra2-4

and an understanding of the sequence dependence of fragment
ions generated by peptides.5-6 These algorithms and software
implementations (frequently referred to as “search engines”7-10)
have made it possible to perform these “protein identifications”
on very large data sets.

Protein identifications of this type are based on the assign-
ment of one or more appropriate peptides from a protein’s
sequence to individual tandem mass spectra from the experi-
mental data set. However, some fraction of the spectrum-to-
peptide sequence assignments made by any algorithm will be
caused by chance rather representing true sequence assign-
ments. While these false-positive assignments can be easily
dismissed by expert manual inspection in small sets of protein
identifications, in very large sets, this approach has become
impractical.11

Research into the solution of this problem has led to two
general approaches. In the first approach,12 an attempt is made
to model the observed distribution of the best spectrum-to-
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peptide sequence assignments in a large data set and fit this
data to two theoretical distributions: a true-positive distribu-
tion and a false-positive one. The second approach13 is to
evaluate each spectrum-to-sequence assignment in the context
of all possible sequence assignments for that spectrum, and
by modeling the distribution of all assignments, determine the
likelihood that the best assignment is significantly different
from all other assignments. Both approaches use these model
distributions to assign a probability that any particular best
assignment could have occurred by chance alone.

These predictions of the probability that a particular se-
quence assignment was a chance event have been used to
specify probability thresholds for interpreting a large data set.
For example, a typical threshold value would be an expectation
value e < 0.05, implying that the lowest quality assignment
allowed would only be expected to occur 0.05 times at random
(or once in 20 repetitions of similar experiments). These
threshold values are normally set rather arbitrarily prior to the
data analysis, and while they may produce reasonable results
in general, using a single threshold value for data generated
from different samples and different instruments may result
in including an unnecessary number of false-positive assign-
ments (too low a threshold) or false negatives (too high a
threshold.

This paper proposes a simple method to solve the practical
problem of how to determine a reasonable probability thresh-
old value for a large data set and to easily evaluate the
confidence that a particular data set represents true assign-
ments in a single, easily obtained heuristic diagram. This type
of diagram (rho-diagram) and a related parameter derived from
it (rho-score) are the result of a simplification of any proteomics
sequence assignment data set into a normalized plot designed
to test the null hypothesis that all of the assignments present
in a given data set are purely by chance. Inspection of the
diagram allows the unambiguous assignment of reasonable
threshold values, as well as a means of judging the degree to
which changing any analysis parameter has improved (or
worsened) the overall set of sequence assignments.

2. Definition of the rho- Diagram and rho- Score

The goodness-of-fit of a tandem mass spectrum to a peptide
sequence is normally estimated using an algorithm that gener-
ates some type of score (s). The value of s is a function of some
combination of factors that measure to what extent the
spectrum matches the spectral features that can be predicted
for that sequence. The scoring algorithms are designed to
maximize s when the best correlations between a spectrum and
a peptide are obtained.

Throughout the discussion below, the spectrum-to-sequence
matches derived from this scoring process will be classified into
two sets: true- or false-positives. The matches discussed
correspond to the best possible assignments that can be made,
following the most stringent application of algorithms and
software designed to remove as many questionable matches
as possible. These matches represent the results to be presented
to the nonspecialist consumer of the information, such as
biological or medical researchers, who have the reasonable
expectation that any list of identifications reported to them
corresponds to a list of positive results, albeit with varying
degrees of confidence. The results of the much more detailed
considerations associated with developing that final list, in
which many more categories of assignments must be consid-

ered, can be tested using the heuristic described below, to the
extent that the choices made impact the final list of identifica-
tions.

For the purposes of this discussion, a sequence assigned to
a spectrum that is slightly different from the true sequence,
but which was assigned because the true sequence was not
tested, will be considered to be a true-positive. An example of
this situation would be the assignment for which a detailed
examination of the results showed that a better match to the
data could have been obtained by assuming that a single
asparagine residue in that sequence had been deamidated by
the sample preparation protocol. On the other extreme, a strong
spectrum that was assigned to a genuinely incorrect sequence
because the true sequence was not present in the proteome
sequences tested will be considered a false-positive. Any
sequence assignment made to a spectrum generated from a
nonpeptide precursor, such as chemical noise, will also be
covered by the term false-positive.

Given the properties of s, it is possible to model the
distribution of scores that any such algorithm will generate if
it is applied to the comparison of a tandem mass spectrum
and a set of peptides that does not contain any sequences that
are true-positive identifications for that spectrum. This distri-
bution of scores can be said to be stochastic, in the sense that
it does not represent genuine identifications; it is generated
by coincidental partial matches that are the result of comparing
a spectrum against a large number of peptides sequences. The
portion of the stochastic distribution (p(s)) representing the
highest scores is of most interest in practice, as it is these high-
scoring stochastic matches that are the most likely to be
confused with true-positive. The functional form of p(s)
depends on the scoring algorithm, for example, forming a
Poisson distribution9 or a standard Gumbel distribution.13 In
most common cases, the region of the distribution representing
the highest scoring stochastic matches can be approximated
by an exponential distribution

If a particular data set contains many tandem mass spectra
and these spectra have all been scored in such a way that they
all represent stochastic matches (e.g., scoring them against a
reversed protein sequence database14), then for a given score,
it is straightforward to predict the number of spectra that would
be expected to have a particular score, which is the definition
of the expectation value, e(s):

One way to test this relationship is to take a set of scored
spectra and create a vector E composed of the number of
spectra in intervals, such that Ex is defined as the number of
spectra that have been assigned an expectation value between
exp(-x) and exp(-(x + C)). For simplicity, C ) 1 will be used
for this discussion (i.e., integer intervals) so that Ei (i ) 0, -1,
-2, ,,,) will be defined as the number of spectra with expecta-
tion values between exp(i) and exp(i - 1). Given a set of N
spectra, each of which has been assigned a peptides sequence
and an expectation value that the assignment is stochastic, if
all of those assignments are truly stochastic, the values Ei can
calculated from the definition of expectation values

p(s) ∝ exp(-âs) (1)

e(s) ∝ p(s) (2)

Ei ) ∫exp(i-1)

exp(i)
Nde ) N[exp(i) - exp(i - 1)] (3)
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A consequence of this definition of E is that the ratio of any
two elements of this vector should have the following property:

Equation 4 represents a prediction of the purely stochastic
behavior of E, which can be very easily calculated for any set
of experimental spectrum-to-sequence assignments. It should
be noted that eq 4 is independent of eqs 1 and 2: it only
requires that there is some method of estimating the expecta-
tion that a particular result is a stochastic sequence assignment.
The estimator used to calculate the expectation value does not
affect eq 4. Rather, the equation can be used to test whether a
particular estimator is correctly assigning expectation values.
Equation 4 is also independent of the scoring system used, the
length of the peptides, the m/z value of the spectra, or any
other experimental parameter. Any observed deviations from
eq 4 that can be correlated with any such parameter indicate
that the expectation value estimator is not adequately account-
ing for that parameter, making it a useful test for exploring the
accuracy of any statistical formulation of the peptide-to-
spectrum assignment problem.

A practical test of the null hypothesis presented by this eq 4
is to define a value F(i), such that

The utility of this value can be illustrated by constructing a
plot of the measured F(i) values for a particular set of spectrum-
to-peptide identifications, as a function of the logarithm of the
expectation value predicted for stochastic matches to the data.
For the purposes of this discussion, a plot of this form will be
referred to as a “rho-diagram”.

Figure 1 illustrates several possible cases for a rho-diagram.
If a set of putative peptide identifications is composed of purely
stochastic matches, then the condition F(log(e(s)) ) log(e(s))
will be met (the diagonal line). Alternatively, if a set of
identifications represents purely true-positive identifications

(open squares), then the intervals with low-expectation values
will be populated with more matches than would be expected
for the stochastic case, resulting in correspondingly higher F
values. In the intermediate case, where the set contains both
false-positive and true-positive identifications (open circles),
the intervals with relatively high-expectation values are domi-
nated by stochastic matches, but at some value of log(e(s)) true-
positives begin to dominate, producing a deviation toward
higher values for F. Simple visual inspection of this rho-diagram
of any proteomics data set can therefore be used to rapidly
evaluate the quality of the data set, as compared to purely
stochastic behavior.

For quality control purposes, it is often useful to produce a
single numerical value that can be used to classify the quality
of a data set. One such value that can be derived from Figure
1 will be referred to as the “rho-score”, which can be expressed
by

and where R is the integral of experimental data in the rho-
diagram and D is the integral of the diagonal prediction, over
the same range of log(e(s) values. Given this definition, the rho-
score will range from 0 (indistinguishable from purely stochas-
tic results) to 100 (putatively all true-positives). It should be
noted that since both axes of this diagram are negative, these
integrals represent the area between the curve and the negative
x-axis, which is above the curve rather than below it.

3. Experimental Section

All protein identifications were performed using the open
source search engine, X! Tandem (version 2007.01.01).10 The
rho-diagrams were generated by the Global Proteome Machine
(GPM)15 component PERL script “plist.pl” (version 2007.01.06).
All of the software, including source code, was made available.16

This version of X! Tandem generates the values for the vector
E, in a range of log-intervals from i ) 0 to -19, and stores them
in its XML output files, in the “Performance parameters” group,
as a note element with the attribute name “quality scores”. The
rho-values and diagrams reported in this paper were calculated
by checking the Ei values, starting at i ) 0 and stopping at the
first Ei < 5.

It should be noted that the displays generated by the Global
Proteome Machine interfaces use base-10 logarithms to display
rho-diagrams, while all of the rho-diagrams shown in this work
use natural logarithms. The functional form and conclusions
formed from these diagrams was independent of the logarithm
base used.

Protein identification analysis was performed using either
an unmodified Panasonic Toughbook CF-W4 laptop computer
(Pentium M, 1.2 GHz processor, 512 MB RAM) or an unmodi-
fied Sony Vaio PCV-W30 desktop computer (Pentium 4, 2.0 GHz
processor, 512 MB RAM), using the standalone version of the
GPM, gpm-xe.16 All eukaryote proteome sequences were ob-
tained from ENSEMBL.17 All prokaryote proteome sequences
were obtained from the National Center for Bioinformatics.18

The tandem mass spectrum data sets used for this analysis
were obtained from data repositories, rather than generated
especially for this study. Data sets from Proteome Commons,19

Figure 1. A representation of F as a function of the predicted
log(e) distribution. The diagonal line represents purely stochastic
matches, the squares (0) represent a hypothetical identification
set that contains only true sequence identifications, and the
circles (O) represent an intermediate hypothetical case containing
both stochastic matches and true identifications.

Ei-j

Ei
)

N exp(i - j)[1 - exp(-1)]

N exp(i)[1 - exp(-1)]
) exp(-j), or

log(Ei-j

Ei
) ) -j (4)

F(i) ) log(Ei

E0
) (5)

r ) 100 × (1 - R/D)

where: if r < 0, F-score ) 0

if 0 e r e 100, F-score ) r

if r > 100, F-score ) 100 (6)

Determining the Overall Merit of Protein Identification Data Sets research articles

Journal of Proteome Research • Vol. 6, No. 5, 2007 1999



the Open Proteomics Database,20 and the PeptideAtlas Reposi-
tory21 were used, without any additional processing. Reference
to the specific accession numbers and file names for specific
data sets were made in the Results and Discussion section,
below. Please refer to the original data annotations at the
relevant repository to obtain information not provided in this
manuscript regarding the details of how each data set was
generated. These repositories also include the peptide-to-
spectrum assignment information and protein identification
information generated by the groups that made the original
data depositions. Individual data sets were selected from these
repositories based on their suitability for demonstrating fea-
tures associated with rho-diagrams. The behavior of each of
the selected data sets was not unusual: the features demon-
strated below were common to all of the data sets available at
these repositories tested.

These data sets fall into two categories: (1) data generated
from artificial mixtures in which the sample composition are
is well-known; and (2) data generated from real experiments,
where the biological origin of the sample is known but the
detailed composition of the sample is not. The Proteome
Commons Aurum data set belongs to the first category: it was
designed for use in testing protein identification algorithms. It
consists of high-quality mass spectra obtained from a mixture
of known proteins, with each of the recombinant proteins in
the mixture having been purified individually and then mixed
together in known concentrations. The data sets from OPD and
PeptideAtlas belong to the second category: the data was
obtained to solve real problems, and the types of experimental
artifacts often found in real data are represented.

4. Results and Discussion

4.1. Testing the Accuracy of the Expectation Value Predic-
tions. The derivation and justification for the rho-diagram given
above assumes that the value of e(s) for any spectrum-to-
sequence match can be estimated with some degree of ac-
curacy and that the distribution of e(s) values for a data set
will follow the behavior predicted by the appropriate stochastic
model function. The search engine used in this case, X!
Tandem, uses fit of the experimentally derived identifications
to eq 1 as its estimator of stochastic behavior. While it is
possible to construct theoretical data sets that would not
conform to this model, the practical utility of rho-diagrams
depends on the behavior of authentic data sets, generated by
tandem mass spectrometers in the course of performing
meaningful experiments. Therefore, all of the data sets used
to test the assumptions made about the properties of rho-
diagrams were obtained from publicly accessible proteomics
experimental data repositories, rather than simulations or data
specifically generated to demonstrate a particular point.

The validity of the X! Tandem’s implementation of eq 1 for
experimental data sets was demonstrated in Figure 2. This rho-
diagram plots the results of performing protein identification
analyses using protein sequences that do not contain any
peptides that can be true spectrum-to-sequence assignments.
These exclusively “false” protein sequences were generated by
reversing the amino acid sequence of the proteins in the human
proteome.14 Therefore, the scores generated by this comparison
were the result of purely false-positive stochastic assignments.
The results of three independent data sets were plotted on the
same diagram. Inspection of the diagram shows that, to a good
degree of accuracy, the null hypothesis was correct. The plotted
points clustered around the diagonal line, as would be expected

given the prediction made in eq 4. The measured least-squares
fit slope was 1.03, also in agreement with the predicted value
of 1.00. On this basis, it was reasonable to conclude that eq 1
was an adequate expectation value estimator for these data sets.
Many data sets and conditions for the generation of purely
false-positive assignments have been tested in the course of
this study (data not shown), and the plot in Figure 1 was
representative of the results of these tests.

4.2. Interpretation of rho-Diagram Features. Figure 3
illustrated the rho-diagrams for three data sets, matched against
the appropriate human protein sequences. Data set 1 (closed
circles) was characteristic of the rho-diagram generated from
a spectrum collection of rather low quality, containing few
interpretable spectra. The points on the plot began to deviate
significantly from the diagonal beginning at log(e) ≈ -6 (or
e(s) ≈ 0.0025). The interpretation of this behavior was under-
stood by thinking of the assigned spectra in each interval as
being a mixture of true-positive (ti) and false-positive assign-
ments (fi). From the definition of E:

Figure 2. The rho-diagram generated from the analysis of three
sets of experimental tandem mass spectra against reversed
human protein sequences. The data sets used were obtained
from the PeptideAtlas repository: PAe000032: 17.mzXML;
PAe000112: AdducinIISCX1.mzXML;andPAe000002: raftapr_1.dta.
The solid line represents a least-squares fit to the data, resulting
in F ) 1.03 log(e) - 0.12, R2 ) 0.96.

Figure 3. The rho-diagram generated from the analysis of two
sets of experimental tandem mass spectra against human protein
sequences. The data sets used were obtained from the Peptide-
Atlas repository: 1 (b, rho-score ) 24) PAe000032: 17.mzXML;
2 (9, rho-score ) 64) PAe000112: AdducinIISCX1.mzXML; and 3
Proteome Commons: (0, rho-score ) 85) Aurum: T10467.mgf.
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Therefore, for Data set 1, in the region where the points were
on the diagonal, fi . ti and the behavior of r was dominated
by the behavior of fi, which was governed by the stochastic
distribution. Deviation from the diagonal begins when ti ≈ fi.
In the region of the curve where ti . fi, the behavior of the
plot became independent of the stochastic distribution; instead
the plot followed the distribution of true-positive results. It
should be remembered that any useful scoring algorithm has
been specifically designed to generate high true-positive scores
so it should generate a distribution significantly skewed toward
high scores.

This interpretation allows one to directly imply that for
results in Data set 1 with log(e(s)) > -5, a majority of the
peptide sequence assignments were produced by stochastic
matches, and therefore the results are unreliable. Results with
log(e(s)) < -7 were nonstochastic and represent true-positive
assignments. Results in the range log(e(s)) > -7 but < -5
contain a mixture of a similar number of true and false-positive
assignments. It should be emphasized that this interpretation
does not mean that there are no true-positive assignments
among the results with log(e(s)) > -5. Rather, it means that it
would be necessary to apply additional constraints during the
analysis process to distinguish the relatively rare true-positives
from the predominantly false-positive background.

Data set 2 (Figure 3, closed squares) represented a more
common case, and it was typical of most good quality data sets
examined for this study. The transition between stochastic and
true-positive behavior was sharper than for Data set 1, occur-
ring at log(e(s)) ≈ -3 (or e(s) ≈ 0.05). Results with log(e(s)) <
-3 would be dominated by true-positive peptide sequence
assignments, while those with log(e(s)) > -3 would be domi-
nated by false-positive ones.

Data set 3 (Figure 3, open squares) represented the best case,
and it was typical of the highest quality data sets examined. In
this case, there were no data points that could be convincingly
fit to the diagonal line. Conservatively, results with log(e(s)) <
-1 (or e(s) < 0.4) were interpreted as being mainly composed
of true-positives: for this data set, there was no convincing
evidence that any significant number of false-positive results
were found.

The behavior of the plots displayed in Figure 3 made their
interpretation in terms of a threshold (ethresh) quite simple. In
normal laboratory usage, this threshold represented an expec-
tation value such that for all e(s) < ethresh, a majority of the
peptide assignment were true-positives. In terms of the rho-
diagram, this condition was met when the experimental points
began to deviate systematically from the diagonal line. By
projecting that point of deviation up on to the x-axis, the log-
(e(s)) value corresponding to the change from majority false-
positive to majority true-positive was estimated. Application
of this idea to Figure 3 yielded Data set 1, log(ethresh) ) -6; Data
set 2, log(ethresh) ) -3; and Data set 3, log(ethresh) ) -1.

Consideration of all three data sets in Figure 3 together
demonstrated the potential practical advantages of using a rho-
diagram to determine the probability threshold for the inter-
pretation of proteomics data. Simply selecting a single value
for this threshold might be adequate for one of the sets, but it
would be completely inadequate for the other two, either
including too many false-positives or excluding too many true-
positives. Determining the threshold value by directly testing
the stochastic null hypothesis, however, produces a very

reasonable heuristic criterion for establishing its value as well
as a simple test that allows for the rejection of any data set
that does not contain a significant number of interpretable
sequence assignments.

An important special case occurred when a particular result
set generated a rho-diagram in which there was no significant
deviation from the diagonal (e.g., all three data sets in Figure
2). In this case, all of the intervals in E contained a majority of
false-positive results. The concept of a threshold value was
inappropriate for analyzing this type of results set, and the
results must be either be interpreted manually or rejected as
unreliable and remeasured.

4.3. Using rho-Diagrams To Optimize Search Parameters.
Any practical search engine uses a number of parameters to
customize the sequence assignment process to the character-
istics of the chemical processing and instrumentation used to
generate and measure the peptide tandem mass spectra
necessary for the sequence assignment process. Determining
the appropriate values for these parameters has been a matter
of intuition and experience on the part of the analyst.

Figure 4 illustrates the use of a rho-diagram to evaluate the
results of changing these search parameters. The closed
rectangles plot the results of setting the parent ion tolerance
in the range 4 > ∆m > 0 Da (∆m ) m - M, where m was the
measured parent ion mass, and M was the mass calculated
from the peptide sequence). The open diamonds plot the
results of searching the same data set, with 0 > ∆m > -4 Da.
Clearly, the plots were quite different: the first parameter
setting produces a plot that showed no evidence of significant
false-positives in any interval, while the second setting pro-
duces a plot that only slowly separates itself from diagonal. This
behavior indicated that the second setting produced far fewer
true-positives than the first. This effect was predictable: the
low resolution of the quadrupole mass spectrometer used to
make the measurements has the practical effect of interpreting
the contribution of 13C isotopes as an effective mass shift to
higher measured mass. The additional effects of space-charging
in the ion trap also tended to shift the measurement toward

Ei ) ti + fi (7)

Figure 4. Demonstration of the use of the rho-diagram to
evaluate the effects of changing the parameters for a search
engine, using the PeptideAtlas experimental tandem mass
spectra data set PAe000166: lb031104_04.mzXML, searched
against the S. cerevisiae proteome. The relevant parameter sets
were as follows: 1 (9, rho-score ) 84) parent ion mass tolerance
+4/-0 Da, protein cleavage reagent: trypsin; 2 (], rho-score )
44) parent ion tolerance -0/-4 Da, protein cleavage reagent:
trypsin; and 3 (b, rho-score ) 0) parent ion mass tolerance +4/-
0.5 Da, protein cleavage reagent: V8 protease.
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higher mass. Therefore, most true parent ion mass measure-
ments should be higher than the calculated mass. A small
number of true measurements had ∆m < 0; however, their
unambiguous interpretation would clearly require more effort.

The third plot in Figure 4 (closed circles) was generated by
using a parent ion tolerance that should be good (4.0 > ∆m >
-0.5 Da); however, the protein cleavage reagent parameter was
changed from cleavage with trypsin (which cleaves at any K-X
or R-X bond, except for XdP) to cleavage with V8 protease
(which cleaves at any E-X or D-X bond). The parameter
setting produced a diagonal plot (least-squares fit linear slope
) 1.05) indicating that the data contained no evidence of true-
positive results. The cleavage reagent used in the actual
experiment was trypsin, so the use of any cleavage parameter
mutually exclusive to trypsin’s sequence specificity would be
expected to produce only stochastic results.

4.4. Evaluation of Results Using the rho-Score. The discus-
sion of Figures 2-4 has stressed the functional form of the
plotted data, and utility of these diagrams as an unbiased
diagnostic tool for understanding any large set of proteomics
results. Many common circumstances exist in the practice of
laboratory proteomics where examining the details of a rho-
diagram would not be necessary. Instead, comparing results
based on the simpler rho-score (eq 6) may be sufficient. This
score was designed so that its interpretation would be simple:
the higher the rho-score, the greater the proportion of true-
positives in any result set.

When this approach was used to analyzing the data in Figure
3, it was simple to order the true-positive content of the
results: Data set 3 (rho-score ) 85) > Data set 2 (rho-score )
64) > Data set 1 (rho-score ) 24). From the view point of the
scientists engaged in performing this type of analysis, charac-
terizing these data sets by a single, normalized numerical value
considerably simplifies the task of expressing the relative quality
of data sets. From the view point of the consumer of proteomics
information (e.g., a biologist attempting to evaluate proteomics
data reported in the literature), the existence of a normalized
figure-of-merit of this type may simplify the task of drawing
conclusions.

The results in Figure 4 may also be ordered in terms of their
true-positive content: analysis no. 1 (rho-score ) 84) > analysis
no. 2 (rho-score ) 44) > analysis no. 3 (rho-score ) 0). While
it may have been possible to determine this ordering in other
ways, for example, by performing a detailed examination of
the results, the use of a single score with a straightforward
statistically valid implication greatly reduces the expertise
necessary to make such a judgment. Proteomics data has often
been analyzed to maximize the number of identifications
found, with no method available to determine how much of
any increase in this number of identifications was caused by
the increasing proportion of false-positive results. The use of
rho-scores as an additional criterion may provide insight into
this latter mechanism, which can confound the application of
any optimization process to real experimental data.

4.5. Use of the rho-Score for the Comparison of Cross-
Species Proteomics Results. One of the practical problems
associated with the use of tandem mass spectra and peptide
identification search engines that compare the spectra to the
sequences from a known proteome has been the lack of known
proteome sequence sets for some commonly used experimental
model organisms. While this situation has been resolved for
many organisms because of the increasing number of fully
sequenced genomes, it still remains a challenge. For example,

if an investigator has thoroughly characterized a Syrian hamster
(Mesocricetus auratus) model for a particular form of cancer,
to what extent can the well-known proteome sequence of the
house mouse (Mus musculus) be used to interpret a proteomics
data set derived from that hamster model? Would the sequence
of the Norway rat (Rattus norvegicus) be a better choice?

Given a set of experimental spectra and a list of sequences
for each species, the application of rho-scores as a figure-of-
merit can provide at least some guidance to answer this type
of question. Figure 5 displayed the comparison of rho-scores
generated by searching a large set of high-quality tandem mass
spectra against nine different eukaryote species’ proteomes.
The experimental data was generated from a set of human-
sequence proteins. The trend shows that species closely related
to humans, for example, Pan troglodytes (chimpanzee) and
Macaca mulatta (rhesus macaque), produce rho-scores closest
to the human value. These close relatives are followed (in order
of decreasing true-positive content) by the dog, mouse, frog,
nematode, mouse ear cress, and brewer’s yeast proteomes.
Given this result, using the chimpanzee or rhesus macaque
proteome to analyze human-sourced proteins should give
reasonably good results. Using the brewer’s yeast proteome
would be a bad choice.

The temptation to use this type of correlation to draw
taxonomic conclusions about eukaryote species should be
treated with some caution. An experimental data set generated
from niche-specific proteins may produce a very different result
from one generated from proteins that have highly conserved
sequences. Differences in the quality of genome sequences may
also influence the species-to-species trends for particular data
sets. A species with a low coverage genome may be the missing
the necessary coding regions for the translation of a particular
protein because genome sequence is incomplete, rather than
the absence (or significant evolution) of that protein sequence.

It may also be tempting to equate the rho-score value with
other commonly used characterizations of this type of data set,
for example, assuming that a rho-score of 25 implies that the
results were 25% correct. While there will be correlations
between different figures-of-merit for a data set, the rho-score
should only be considered as a relative figure-of-merit to
compare differences between sets of results and not as a
fractional measure of “correctness” of any particular result.

Figure 5. The rho-scores generated from the analysis of the
complete Proteome Commons Aurum spectrum data set of
experimental tandem mass spectra against different eukaryote
species proteome sequences. The source species of the sample
was H. sapiens.
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A similar examination of prokaryote species was illustrated
in Figure 6. Two different sets of spectra, one derived from
Escherichia coli proteins and the other from Mycobacterium
smegmatis proteins, were scored against 10 species’ proteome
sequences. Again the trends in the rho-score mirror the
expected taxonomic relationships, although in this case the
signals for unrelated species were very low. From this study
and others performed on other data sets (not shown), only
species that were closely related to the species that was the
source of the proteins produced significant rho-scores. Excep-
tions to this generalization will certainly occur, with similar
caveats to those made above for eukaryotes. The smaller
number of proteins in a prokaryote’s proteome and the capacity
of prokaryotes to evolve more rapidly than multicellular
eukaryotes may also explain the relatively sharp distinctions
between species revealed by this plot.

Figure 6 also illustrates the capability of this simple analysis
to signal small weaknesses in an expectation value estimation
algorithm. The Haemophilus influenza proteome produced a
rho-score ∼10 for both sets of data, while most of the other
unrelated proteomes produced a rho-score ∼0. While a rho-
score of 10 was clearly not as good a match as those obtained
from truly related species, it was different from the other
nonrelated species. This difference can be attributed to the way
that the expectation value estimator used by X! Tandem works,
rather than any taxonomic relationship between the species.
X! Tandem tracks the distribution of scores for all possible
peptide sequences from a target proteome that can be made
to a particular spectrum and uses that distribution to fit eq 1.
Because H. influenza has the smallest known bacterial pro-
teome (one-third the size of E. coli’s), X! Tandem’s expectation
value calculation would be expected to be somewhat less
accurate for that proteome, resulting in the observed small
relative increase in the rho-score. To make the best use of X!
Tandem for a proteome as small as H. influenza’s, it would be
advisable to add sufficient decoy sequences into the protein
list so that the total number of proteins searched would be the
equivalent to that of a more typical bacterial proteome (3000-
4000 proteins).

Conclusions

A novel plot, the rho-diagram, for testing proteomics results
sets has been demonstrated to have some utility as a heuristic

method of evaluating the overall quality of the results. The
diagram was derived from the null hypothesis that all of the
spectrum-to-sequence assignments generated from a set of
experimental tandem mass spectra were false-positives caused
by stochastic matches between the spectra and candidate
peptide sequences. The validity of the modeling of distributions
describing these stochastic matches was verified, and the
general characteristics of this diagram were illustrated by
examples drawn from public data repositories. A score derived
from this plot, the rho-score, was shown to reflect the extent
to which a proteomics result set was composed of true-positive
sequence assignments. This score was shown to have potential
use for optimizing the parameters used to carry out spectrum-
to-sequence assignments. This score may also be useful in
evaluating the merit of analyzing experimental proteomics data
with the proteome sequences of taxonomically related species
that have fully sequenced genomes.
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