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Optimal performance of LC-MS/MS platforms is critical to
generating high quality proteomics data. Although individ-
ual laboratories have developed quality control samples,
there is no widely available performance standard of bio-
logical complexity (and associated reference data sets)
for benchmarking of platform performance for analysis of
complex biological proteomes across different laborato-
ries in the community. Individual preparations of the yeast
Saccharomyces cerevisiae proteome have been used ex-
tensively by laboratories in the proteomics community to
characterize LC-MS platform performance. The yeast
proteome is uniquely attractive as a performance stand-
ard because it is the most extensively characterized com-
plex biological proteome and the only one associated with
several large scale studies estimating the abundance of
all detectable proteins. In this study, we describe a stand-
ard operating protocol for large scale production of the
yeast performance standard and offer aliquots to the
community through the National Institute of Standards
and Technology where the yeast proteome is under de-
velopment as a certified reference material to meet the

long term needs of the community. Using a series of
metrics that characterize LC-MS performance, we pro-
vide a reference data set demonstrating typical perform-
ance of commonly used ion trap instrument platforms in
expert laboratories; the results provide a basis for labo-
ratories to benchmark their own performance, to improve
upon current methods, and to evaluate new technologies.
Additionally, we demonstrate how the yeast reference,
spiked with human proteins, can be used to benchmark
the power of proteomics platforms for detection of differ-
entially expressed proteins at different levels of concen-
tration in a complex matrix, thereby providing a metric to
evaluate and minimize preanalytical and analytical varia-
tion in comparative proteomics experiments. Molecular
& Cellular Proteomics 9:242–254, 2010.

Access to proteomics performance standards is essential
for several reasons. First, to generate the highest quality data
possible, proteomics laboratories routinely benchmark and
perform quality control (QC)1 monitoring of the performance
of their instrumentation using standards. Second, appropriate
standards greatly facilitate the development of improvements
in technologies by providing a timeless standard with which to
evaluate new protocols or instruments that claim to improve
performance. For example, it is common practice for an indi-
vidual laboratory considering purchase of a new instrument to
require the vendor to run “demo” samples so that data from
the new instrument can be compared head to head with
existing instruments in the laboratory. Third, large scale pro-
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teomics studies designed to aggregate data across laborato-
ries can be facilitated by the use of a performance standard to
measure reproducibility across sites or to compare the per-
formance of different LC-MS configurations or sample proc-
essing protocols used between laboratories to facilitate de-
velopment of optimized standard operating procedures
(SOPs).

Most individual laboratories have adopted their own QC
standards, which range from mixtures of known synthetic
peptides to digests of bovine serum albumin or more complex
mixtures of several recombinant proteins (1). However, be-
cause each laboratory performs QC monitoring in isolation, it
is difficult to compare the performance of LC-MS platforms
throughout the community.

Several standards for proteomics are available for request
or purchase (2, 3). RM8327 is a mixture of three peptides
developed as a reference material in collaboration between
the National Institute of Standards and Technology (NIST) and
the Association of Biomolecular Resource Facilities. Mixtures
of 15–48 purified human proteins are also available, such as
the HUPO (Human Proteome Organisation) Gold MS Protein
Standard (Invitrogen), the Universal Proteomics Standard
(UPS1; Sigma), and CRM470 from the European Union Insti-
tute for Reference Materials and Measurements. Although
defined mixtures of peptides or proteins can address some
benchmarking and QC needs, there is an additional need for
more complex reference materials to fully represent the chal-
lenges of LC-MS data acquisition in complex matrices en-
countered in biological samples (2, 3).

Although it has not been widely distributed as a reference
material, the yeast Saccharomyces cerevisiae proteome has
been extensively used by the proteomics community to char-
acterize the capabilities of a variety of LC-MS-based ap-
proaches (4–15). Yeast provides a uniquely attractive com-
plex performance standard for several reasons. Yeast
encodes a complex proteome consisting of �4,500 proteins
expressed during normal growth conditions (7, 16–18). The
concentration range of yeast proteins is sufficient to challenge
the dynamic range of conventional mass spectrometers;
the abundance of proteins ranges from fewer than 50 to more
than 106 molecules per cell (4, 15, 16). Additionally, it is the
most extensively characterized complex biological proteome
and the only one associated with several large scale studies
estimating the abundance of all detectable proteins (5, 9, 16,
17, 19, 20) as well as LC-MS/MS data sets showing good
correlation between LC-MS/MS detection efficiency and the
protein abundance estimates (4, 11, 12, 15). Finally, it is
inexpensive and easy to produce large quantities of yeast
protein extract for distribution.

In this study, we describe large scale production of a yeast
S. cerevisiae performance standard, which we offer to the
community through NIST. Through a series of interlaboratory
studies, we created a reference data set characterizing the
yeast performance standard and defining reasonable per-

formance of ion trap-based LC-MS platforms in expert labo-
ratories using a series of performance metrics. This publicly
available data set provides a basis for additional laboratories
using the yeast standard to benchmark their own perform-
ance as well as to improve upon the current status by evolving
protocols, improving instrumentation, or developing new
technologies. Finally, we demonstrate how the yeast perform-
ance standard, spiked with human proteins, can be used to
benchmark the power of proteomics platforms for detection
of differentially expressed proteins at different levels of con-
centration in a complex matrix.

EXPERIMENTAL PROCEDURES

Generation of Yeast Protein Performance Standard—An SOP for
preparation of the yeast performance standard was developed based
on the approach of Piening et al. (12) with modifications to allow for
scale-up. Production was outsourced to Boston Biochem (Cam-
bridge, MA). The full protocol is given in supplemental Section A;
initial characterization of the preparation is presented in supplemental
Section B. In brief, S. cerevisiae strain BY4741 (MATa, leu2�0,
met15�0, ura3�0, his3�1) was grown in a 10-liter batch of rich (yeast
extract peptone dextrose) medium at 30 °C in a fermentor to an A600

of 0.93. The yeast were harvested by continuous flow centrifugation
(yield, 5.4 g wet weight), and the cell pellet was washed three times
with ice-cold water. The cells were lysed by incubation with ice-cold
trichloroacetic acid (10% final concentration in 160-ml total volume)
for 1 h at 4 °C. The protein precipitate was collected by centrifugation,
washed twice with 160 ml of cold 90% acetone, and pelleted again.
The resulting material was lyophilized and stored at �80 °C. The total
yield of lyophilized yeast lysate was �0.75 g.

Preparation of Digested Yeast Lysate for Study Sample Prepara-
tion—Lyophilized yeast lysate (�11 mg) was reconstituted in 50 mM

ammonium bicarbonate containing 2 mg/ml RapiGest SF (Waters),
heated at 60 °C for 45 min, and sonicated for 5 min on ice. Next, 50
mM DTT in 50 mM ammonium bicarbonate was added to yield a final
DTT concentration of 5 mM, and the sample was incubated at 60 °C
for 30 min. After cooling to room temperature, 200 mM iodoacetamide
in water was added to yield a final concentration of 10 mM, and the
alkylation reaction was left to proceed at room temperature in the
dark for 30 min. To quench alkylation, 100 mM DTT in 50 mM ammo-
nium bicarbonate was added to the sample to yield a final concen-
tration of 10 mM. Prior to the addition of trypsin, an additional volume
of 50 mM ammonium bicarbonate was added to the sample to reduce
the RapiGest concentration to 0.1%. Trypsin (0.5 �g/�l in 20 mM

aqueous HCl) was then added to the yeast lysate sample in a 1:50
ratio to the total protein amount. The sample was digested overnight
(18 h) at 37 °C with gentle swirling. After digestion, to inactivate
trypsin and cleave the RapiGest, concentrated trifluoroacetic acid
was added to the sample to yield a concentration of 0.5%. The
sample was then incubated again at 37 °C for 60 min followed by
centrifugation at 10,000 rpm for 10 min. The supernatant was trans-
ferred to a new sample tube and lyophilized to dryness; after lyoph-
ilization, the dried digest was resuspended in 0.1% aqueous formic
acid to yield a concentration that would correspond to �60 ng/�l total
yeast protein prior to digestion. Where indicated, 48 human proteins
(Sigma UPS1) were spiked into the reconstituted yeast performance
standard (supplemental Section C).

LC-MS/MS Methods—Each laboratory was asked to follow an
SOP for collection of all data in Study 6. A detailed description of the
SOP is provided in supplemental Section C. Parameters and settings
specified in the SOPs were derived by a combination of consensus
among the participants and limited method optimization studies. The
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SOPs do not represent fully optimized methods and are not intended
to be prescriptive for the field. The SOPs were used instead to
minimize variation due to factors that could be anticipated and con-
trolled. Each laboratory was allowed to use its own favorite protocol
for Study 8, and the individual protocols are summarized in supple-
mental Section D. Four models of mass spectrometer were used:
LTQ, LTQ-XL, LTQ-XL-Orbitrap, and LTQ-Orbitrap (see supplemental
section J). In each case, MS/MS spectra were collected in the LTQ.
For the LTQ-Orbitrap instruments, MS1 spectra used to determine the
precursors selected for MS/MS were collected at 60,000 resolution in
the Orbitrap. These high resolution scans enabled precursor selection
to be limited to precursors that exhibited both a charge of 2� or
higher and an isotope cluster from which the monoisotopic peak
could be discerned. The low resolution MS1 scans on LTQ instru-
ments did not enable these precursor selection criteria. A complete
description of the acquisition parameters and other instrument con-
figuration parameters can be found in supplemental Sections C, D,
and J.

Database Search Pipeline—For Studies 6 and 8, centroided tan-
dem mass spectra were converted to peak lists in mzXML format by
the msConvert tool of ProteoWizard 1.6.0 (21). The software was
configured to centroid MS scans. Peptides were identified against the
S. cerevisiae Genome Database orf_trans_all, downloaded April 6,
2007. These 6,718 sequences were augmented by 48 UPS1 se-
quences (Sigma) (supplemental Section E), 23 NCI20 sequences
(supplemental Section F), and 74 contaminant protein sequences; the
full database was then doubled in size by adding the reversed version
of each sequence. The FASTA file is available at http://cptac.
tranche.proteomecommons.org/. The MyriMatch database search
algorithm version 1.6.0 (22) identified tandem mass spectra to peptide
sequences. Semitryptic peptide candidates were included as possi-
ble matches. The configuration defined proteolytic cleavage sites
after any Lys or Arg (whether or not Pro was the next residue) or after
a Met at the N terminus of a protein, allowing for up to two missed
cleavages. Potential modifications included oxidation of methionines,
formation of N-terminal pyroglutamine, deamidation of Asn-Gly mo-
tifs, and carbamidomethylation of cysteines, all as variable modifica-
tions. For the LTQ, precursors were allowed to be up to 1.25 m/z from
the average mass of the peptide. For the Orbitrap, precursor ions
were required to fall within 10 ppm of the database peptide with ppm
computed from m/z values. To retain identifications in which the
peptide monoisotope had been miscalled by the instrument control
software, MyriMatch also sought matches in which a neutron had
been added to or subtracted from each database peptide. Fragment
ions were uniformly required to fall within 0.5 m/z of the monoisotope.
IDPicker version 2.5 (23, 24) applied a 2% false identification rate per
raw file at the peptide-spectrum match level and applied parsimony to
the protein lists, requiring all proteins to match at least two distinct
peptide sequences and to match at least 13 spectra (one per instru-
ment per study). The two-peptide rule was applied globally, not by
instrument. Hence, proteins on the list might have a single peptide for
a given instrument. In contrast, the two-peptide rule was applied per
raw file in the statistics code that generated the outputs displayed in
Tables I and III as well as Figs. 2 and 3. IDPicker reports can be
downloaded from http://cptac.tranche.proteomecommons.org/.

Statistical Methods—For Table I, we used a dimensionless mea-
sure, the coefficient of variation, to compare the within and between
laboratory variation of the total number of spectra, sequences, and
the total number of proteins. The coefficient of variation is the
normalized measure of dispersion, computed as the ratio of the
standard deviation to the mean of the data. The within lab CV% is
computed as the ratio of the standard deviation of the response
over all runs (times 100) for each lab to its mean. The between lab
CV% is the ratio of the standard deviation of the means of each lab

to its overall mean (times 100). For Tables I and II, a summary of the
performance metrics is provided in supplemental Section G; a
detailed description of these (and additional) metrics can be found
in the accompanying study by Rudnick et al. (32). Furthermore, the
software pipeline used to calculate the performance metrics is
available for download from NIST.

For Table III, we treated the spiked sample as a case sample and
the pure yeast reference sample as a control sample. For each
sample, we used the data resulting from all 21 independent LC-
MS/MS replica runs (nine from LTQ instruments and 12 from Orbi-
trap instruments). The data were analyzed using the SASPECT
(significant analysis of peptide counts) method described else-
where (25). Briefly, SASPECT uses a probability model to make
inferences about protein abundances based on peptide detection,
and permutation testing is used to estimate the false discovery rate
(FDR) of the analysis.

For Fig. 2, logistic regression was used to evaluate the association
between TAP copy number and detection of yeast proteins in Studies
6 and 8. (“TAP copy number” refers to the estimated molecules per
cell of a given protein, derived from the data of Ghaemmaghami et al.
(16). The logarithm (base 10) of copy number was used as the regres-
sor to improve model fit to the data. Although TAP copy number
estimates include measurement error (16), this uncertainty was not
reflected in the logistic regression analysis. We report a summary
measure of performance for each RPLC run, the CN50. This statistic
estimates the copy number corresponding to 50% probability of
detection for a randomly selected yeast protein. Smaller CN50 values
indicate greater depth of proteome sampling. CN50 is easily derived
from the logistic regression coefficients. Mixed effects linear models
were used for the subsequent analysis of CN50 values and for yeast
peptide and protein counts in Studies 6 and 8. This procedure allows
simultaneous estimation of potential effects of protein spikes as well
as inter- and intrainstrument variability. (See supplemental Section H
for the statistical analysis code for computing the CN50 values as well
as a complete table of CN50 values.)

Public Access to Data—To manage the large number of data files
generated for these studies, a password-protected web site was
developed. This site, hosted at NIST, was designed as a portal used
by the participating laboratories for initiating uploads and downloads
of large data files. Information for each team including labs and
instruments was preloaded into the system, stored in a MySQL
database. At the beginning of each study, the participating instru-
ments at each lab were added to the study, creating hyperlinks by
which data could be uploaded. Importantly, all uploads were then
unambiguously tied to the originating instrument and study along
with a date stamp.

The data transfers were performed using Tranche, an open source,
secure peer-to-peer file sharing tool. A custom user interface for use
by participating laboratories was developed and added to the
Tranche code base. This custom tool allowed the web site and
database to communicate tracking information with Tranche via cus-
tom URLs. When uploads finished, the Tranche hash (a unique data
identifier) and pass phrase were automatically recorded into the web
site’s database. These stored links allow for subsequent retrieval of
the data files using the Tranche download tool. The Tranche hashes
and pass phrases provide a simple and portable way to access data
sets, including relatively large data sets, and can be easily associated
with supporting annotation. Once published, the data will be made
available to the community via Tranche at the data archival page,
http://cptac.tranche.proteomecommons.org/.

Availability of Yeast Performance Standards—The certified yeast
reference material for proteomics use is under development at the
NIST to meet the long term needs of the community and will be
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available in 2010. In the interim, aliquots of the yeast performance
standard described in this study are available through NIST.2

RESULTS

Production and Characterization of Yeast Performance
Standard—A standard operating procedure for preparation of
the yeast performance standard was developed based on the
approach of Piening et al. (12) with modifications to allow for
scale-up (supplemental Section A). Production was out-
sourced to a commercial vendor, and the protein preparation
was transferred to NIST for initial characterization (supple-
mental Section B). In total, 0.75 g of protein was obtained
from 10 liters of yeast culture. The certified yeast reference
material for proteomics use is under development at NIST to
meet the long term needs of the community. In the interim,
aliquots of the yeast performance standard described in this
study are available through NIST.

Identical aliquots of the trypsin-digested performance
standard were distributed to multiple participating laborato-
ries to generate a data set characterizing the performance
standard and determining the degree of variation in the per-
formance of LC-MS platforms across participating laborato-
ries. Five independent laboratories, seven independent
instruments, and four instrument models (LTQ, LTQ-XL, LTQ-
XL-Orbitrap, and LTQ-Orbitrap) were included in the study.
Two sets of analyses were performed (Fig. 1). For both sets,
all sample processing (i.e. trypsin digestion, alkylation, and
reduction) was done centrally at NIST, and all data were
submitted and analyzed through a single analysis pipeline;

hence, any experimental variation between laboratories was
due to differences in LC-MS performance. In one set of anal-
yses (“Study 6”), each sample was also run in triplicate (120
ng loaded on column); however, each laboratory was asked to
follow a predefined SOP dictating HPLC and MS parameters
(supplemental Section C). In addition, a series of samples was
generated in which a mixture of 48 human proteins (Sigma
UPS1) was spiked into the yeast performance standard at
several concentrations, and each of these spiked samples
was also analyzed in triplicate using the SOP. In a second set
of analyses (“Study 8”), each participating laboratory was
asked to perform six shotgun MS/MS runs of the performance
standard (three runs of each of 120 and 600 ng loaded on
column) with each laboratory using its own favorite LC-MS
protocol.

The results for the unspiked yeast performance standard
are summarized in Table I. The unspiked samples in Study
6 produced 72,743 identified spectra that translated into
11,822 distinct peptides. (When spiked samples from Study
6 were also included, the search produced 407,836 high
confidence identifications accounting for 17,904 distinct
peptides.) Study 8 (all samples) produced 191,311 identified
spectra for 17,333 distinct peptides. In Study 8, 120 ng on
column yielded 76,808 identified spectra related to 11,622
peptides, and for the cases in which 600 ng were loaded,
the search rendered 113,892 high confidence identifications
accounting for 15,464 distinct peptides.

As expected, the Orbitrap instruments identified signifi-
cantly more peptides than the LTQ instruments across all
three data sets (Table I, parts A–C; p value � 0.013, t test).2 Aliquots can be requested from NIST (proteome@nist.gov).

FIG. 1. Overview of analyses of yeast
performance standard. Samples were
processed centrally at NIST, and identi-
cal aliquots were distributed to the par-
ticipating laboratories for LC-MS/MS
analyses. Each sample was analyzed in
triplicate, and the data were processed
and analyzed centrally using a single
analysis pipeline. For Study 6, each lab-
oratory conformed to a prespecified SOP
(supplemental Section C). For Study 8, no
SOP was instituted, and the individual
methods of each laboratory are described
in supplemental Section D.

Yeast Performance Standard

Molecular & Cellular Proteomics 9.2 245

http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1


TA
B

LE
I

S
um

m
ar

y
of

LC
-M

S
re

su
lts

,
av

er
ag

e
an

d
C

V
(in

p
er

ce
nt

ag
es

),
fo

r
un

sp
ik

ed
ye

as
t

re
fe

re
nc

e
p

ro
te

om
e

p
ep

t.
,

p
ep

tid
e(

s)
;

A
vg

,
av

er
ag

e.

To
ta

ln
o.

of
ye

as
t

sp
ec

tr
a

To
ta

ln
o.

of
ye

as
t

p
ep

t.
se

q
ue

nc
es

Y
ea

st
p

ro
te

in
s

id
en

tif
ie

d
us

in
g

C
N

50
a

P
er

fo
rm

an
ce

m
et

ric
sb

1
p

ep
t.

2
p

ep
t.

�
2

p
ep

t.
C

-3
A

C
-2

A
D

S
-2

B
IS

-3
B

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
vg

C
V

A
.

S
tu

d
y

8
(6

00
ng

lo
ad

ed
on

co
lu

m
n)

In
st

ru
m

en
t@

La
b

LT
Q

@
73

7,
60

0
2.

0
5,

40
1

1.
3

34
3

1.
1

18
1

5.
3

57
4

1.
9

18
,0

39
2.

7
10

.1
1.

5
32

1.
0

5,
37

4
1.

2
0.

4
0.

4
LT

Q
2@

95
4,

56
8

0.
5

3,
25

7
0.

6
32

1
4.

5
16

5
9.

9
40

4
1.

1
27

,4
16

2.
6

30
.2

0.
9

37
2.

0
5,

27
2

2.
0

0.
5

0.
6

LT
Q

-X
Lx

@
65

4,
54

8
5.

5
3,

90
1

5.
3

36
3

7.
0

16
9

0.
3

47
7

5.
8

22
,3

93
5.

6
16

.3
0.

8
32

2.
5

4,
93

0
3.

7
0.

3
21

.4
O

rb
itr

ap
@

86
6,

91
4

1.
3

5,
48

8
1.

8
34

4
2.

0
16

6
4.

8
60

2
1.

4
17

,7
38

1.
9

14
.0

0.
2

41
0.

9
6,

85
3

2.
1

0.
3

5.
4

O
rb

itr
ap

O
@

65
5,

99
8

0.
9

5,
02

3
1.

8
36

3
4.

0
19

0
8.

7
57

2
3.

6
17

,9
59

1.
6

19
.4

1.
0

32
1.

9
4,

56
9

2.
2

0.
3

4.
7

O
rb

itr
ap

W
@

56
8,

33
6

1.
0

7,
21

1
1.

0
31

3
3.

2
18

2
5.

4
72

4
0.

8
13

,6
56

3.
0

12
.7

0.
7

35
1.

4
5,

69
5

1.
0

0.
4

0.
8

In
te

rla
b

or
at

or
y

va
ria

tio
n

A
ll

LT
Q

s
5,

57
2

31
.5

4,
18

6
26

.3
34

3
6.

1
17

1
5.

0
48

5
17

.6
22

,6
16

20
.7

18
.9

47
.3

34
7.

4
5,

19
2

4.
4

0.
4

17
.0

A
ll

O
rb

itr
ap

s
7,

08
3

16
.6

5,
90

7
19

.5
34

0
7.

4
17

9
7.

0
63

3
12

.7
16

,4
51

14
.7

15
.4

20
.1

36
10

.5
5,

70
6

17
.4

0.
3

5.
6

B
.

S
tu

d
y

8
(1

20
ng

lo
ad

ed
on

co
lu

m
n)

In
st

ru
m

en
t@

La
b

LT
Q

@
73

4,
58

3
6.

5
3,

56
3

4.
9

27
8

5.
5

11
8

12
.5

42
9

3.
2

26
,2

82
4.

9
10

.1
1.

5
27

1.
3

4,
03

8
1.

3
0.

3
5.

5
LT

Q
2@

95
2,

12
4

12
.1

1,
66

5
13

.9
22

9
4.

6
95

5.
3

23
0

11
.9

58
,6

56
14

.2
32

.1
2.

5
29

9.
0

4,
08

1
8.

6
0.

4
6.

0
LT

Q
-X

Lx
@

65
2,

36
7

2.
3

2,
12

8
1.

9
27

5
5.

9
11

7
7.

3
29

1
4.

5
44

,1
57

6.
9

16
.4

1.
7

26
3.

4
3,

87
6

3.
4

0.
3

1.
6

O
rb

itr
ap

@
86

5,
65

4
2.

1
5,

08
1

1.
9

33
1

1.
3

17
4

12
.7

57
3

0.
8

18
,1

59
1.

9
13

.9
0.

5
34

2.
0

5,
07

5
1.

4
0.

2
17

.1
O

rb
itr

ap
O

@
65

4,
38

3
1.

1
3,

86
8

1.
1

34
7

2.
5

17
8

1.
1

47
4

3.
2

22
,6

15
1.

2
18

.2
1.

4
25

2.
5

3,
36

5
0.

5
0.

2
1.

7
O

rb
itr

ap
W

@
56

6,
49

1
1.

7
5,

90
2

2.
0

34
4

2.
4

18
7

5.
9

64
9

0.
8

15
,3

05
0.

1
12

.5
0.

8
32

2.
8

4,
76

2
2.

7
0.

3
0.

2
In

te
rla

b
or

at
or

y
va

ria
tio

n
A

ll
LT

Q
s

3,
02

5
44

.8
2,

45
2

40
.4

26
1

10
.5

11
0

11
.8

31
7

32
.1

43
,0

32
37

.6
19

.5
50

.5
27

7.
3

3,
99

8
5.

3
0.

3
23

.8
A

ll
O

rb
itr

ap
s

5,
50

9
19

.3
4,

95
1

20
.7

34
1

2.
5

18
0

3.
5

56
5

15
.6

18
,6

93
19

.7
14

.9
17

.3
30

13
.4

4,
40

1
18

.0
0.

2
19

.6
C

.
S

tu
d

y
6

S
O

P
(u

ns
p

ik
ed

ye
as

t;
12

0
ng

lo
ad

ed
on

co
lu

m
n)

In
st

ru
m

en
t@

La
b

LT
Q

@
73

2,
94

1
3.

8
2,

43
4

3.
4

32
6

2.
3

14
6

9.
8

32
0

0.
8

35
,4

74
3.

4
20

.8
0.

3
29

4.
1

4,
23

8
4.

5
0.

3
16

.0
LT

Q
2@

95
2,

60
6

4.
1

2,
14

0
6.

1
26

4
5.

4
11

3
10

.5
28

4
8.

3
43

,9
69

2.
7

21
.6

0.
0

30
1.

3
4,

18
1

2.
1

0.
4

5.
5

LT
Q

-X
Lx

@
65

2,
57

1
3.

4
2,

16
5

4.
9

28
7

1.
8

12
7

6.
4

29
1

8.
1

41
,2

56
11

.6
24

.2
2.

1
27

7.
5

4,
16

8
7.

3
0.

3
7.

0
O

rb
itr

ap
@

86
2,

79
4

14
.0

2,
62

3
13

.9
38

7
3.

3
18

8
5.

7
36

8
12

.9
30

,3
53

16
.7

18
.3

4.
9

23
9.

2
3,

32
3

9.
7

0.
0

26
.5

O
rb

itr
ap

O
@

65
5,

02
2

3.
7

4,
62

7
4.

4
39

1
4.

9
21

2
6.

6
56

5
4.

0
18

,2
18

5.
2

19
.9

1.
5

29
5.

8
4,

37
8

6.
0

0.
3

1.
6

O
rb

itr
ap

W
@

56
3,

86
1

6.
7

3,
55

0
6.

6
34

4
7.

8
16

2
6.

1
49

2
5.

4
25

,0
61

5.
1

19
.8

0.
2

26
2.

8
3,

76
2

3.
0

0.
3

3.
6

O
rb

itr
ap

P
@

65
4,

45
3

7.
9

4,
11

6
7.

3
34

1
4.

3
16

5
3.

0
43

9
5.

3
21

,7
77

8.
7

15
.5

2.
1

30
1.

4
4,

48
9

3.
9

0.
4

2.
1

In
te

rla
b

or
at

or
y

va
ria

tio
n

A
ll

LT
Q

s
2,

70
6

7.
5

2,
24

7
7.

3
29

2
10

.8
12

9
13

.1
29

8
6.

4
40

,2
33

10
.8

22
.2

7.
0

28
5.

8
4,

19
6

4.
5

0.
3

24
.6

A
ll

O
rb

itr
ap

s
4,

03
3

23
.6

3,
72

9
23

.0
36

6
7.

4
18

2
12

.7
46

6
17

.9
23

,8
52

21
.6

18
.4

10
.4

27
12

.3
3,

98
8

13
.4

0.
3

51
.1

a
C

N
50

va
lu

es
d

en
ot

e
th

e
co

p
y

nu
m

b
er

co
rr

es
p

on
d

in
g

to
50

%
p

ro
b

ab
ili

ty
of

d
et

ec
tio

n
fo

r
a

ra
nd

om
ly

se
le

ct
ed

ye
as

t
p

ro
te

in
.

C
N

50
va

lu
es

ar
e

d
er

iv
ed

fr
om

lo
gi

st
ic

re
gr

es
si

on
co

ef
fic

ie
nt

s
ob

ta
in

ed
b

y
re

gr
es

si
ng

ye
as

t
p

ro
te

in
d

et
ec

tio
n

(y
es

/n
o)

ag
ai

ns
t

lo
g 1

0
TA

P
co

p
y

nu
m

b
er

(1
2)

.C
N

50
is

th
en

co
nv

er
te

d
to

th
e

co
p

y
nu

m
b

er
sc

al
e

b
y

ta
ki

ng
10

to
th

e
C

N
50

p
ow

er
.

A
ll

m
ea

n
an

d
C

V
ca

lc
ul

at
io

ns
ar

e
p

er
fo

rm
ed

on
th

e
co

p
y

nu
m

b
er

sc
al

e.
(C

N
50

va
lu

es
fo

r
al

lr
un

s
of

al
li

ns
tr

um
en

ts
ar

e
p

ro
vi

d
ed

in
su

p
p

le
m

en
ta

lS
ec

tio
n

H
.)

b
Fo

ur
p

er
fo

rm
an

ce
m

et
ric

s
(d

es
cr

ib
ed

in
su

p
p

le
m

en
ta

lS
ec

tio
n

G
an

d
in

Ta
b

le
II)

,d
es

ig
ne

d
to

d
ia

gn
os

e
LC

-M
S

is
su

es
,a

re
p

ro
vi

d
ed

fo
ri

nd
iv

id
ua

li
ns

tr
um

en
ts

.C
-3

A
is

m
ed

ia
n

p
ea

k
w

id
th

s
fo

r
un

iq
ue

p
ep

tid
es

;
C

-2
A

is
re

te
nt

io
n

p
er

io
d

ov
er

w
hi

ch
50

%
of

th
e

id
en

tif
ie

d
p

ep
tid

es
el

ut
ed

;
D

S
-2

B
is

th
e

nu
m

b
er

of
M

S
2

sp
ec

tr
a

p
ro

d
uc

ed
ov

er
C

-2
A

;
IS

-3
B

is
th

e
ra

tio
of

th
e

nu
m

b
er

of
3�

/2
�

ch
ar

ge
st

at
es

fo
r

al
lp

ep
tid

e
id

en
tif

ic
at

io
ns

.

Yeast Performance Standard

246 Molecular & Cellular Proteomics 9.2

http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1
http://www.mcponline.org/cgi/content/full/M900222-MCP200/DC1


Detection sensitivity could also be monitored using the per-
formance standard. The abundance of �3,800 yeast proteins
has been estimated by quantitative Western blotting (16), and
previous studies have shown strong correlation between
these protein abundance measurements and detection effi-
ciency by LC-MS (4, 12). This strong correlation is recapitu-
lated in our analyses of the yeast performance standard (Fig.
2) with the Orbitrap instruments overall showing slightly higher
detection efficiencies than the LTQ instruments (Table I, CN50
values; p value � 0.029, t test). Intra and interlaboratory
variation was also calculated from the data set. Across the
vast majority of parameters (Table I), intralaboratory variation
was smaller than interlaboratory variation. For example, for

depth of proteome sampling (Table I, CN50 values), intralabo-
ratory variation was significantly lower than interlaboratory
variation (p value �0.028 by one-sided paired two-sample t
test).

Use of Performance Metrics for Diagnosing LC-MS Platform
Problems—In work leading up to these interlaboratory stud-
ies, occasional runs were observed wherein the number of
high confidence peptide identifications was significantly less
than expected based on the bulk of data. In an effort to
identify and monitor the factors contributing to this variability,
a set of LC-MS performance metrics was developed. These
metrics, described in detail in the accompanying study by
Rudnick et al. (32), fall into six classes (chromatography,

FIG. 2. Detection efficiency of yeast proteins relative to their abundance. The gray curve shown in each panel denotes the TAP tag
copy number distribution yeast proteins (derived from Ghaemmaghami et al. (16)); the abundance of proteins ranges from fewer than 50
to more than 106 molecules per cell, and only 9% of yeast proteins have copy numbers greater than 20,000. Logistic regression curves
(in color) indicate the probability of protein detection as a function of copy number for each run. The vertical lines indicate the mean copy
number (for each instrument) corresponding to 50% probability of detection (CN50). Smaller CN50 values indicate greater depth of
proteome sampling. The graph indicates that, on average, only the most abundant yeast proteins have a high probability of being detected
in this one-dimensional LC-MS analysis. a shows the results for high protein loading (600 ng on column) when each lab uses their typical
(non-SOP) testing protocol (Study 8). b shows the results for low protein loading (120 ng on column) using the same (non-SOP) protocol.
c shows the results obtained from the SOP (Study 6; 120 ng on column). As expected, CN50 is increased in the low protein loading group
compared with the high loading group (p � 0.0001). For equivalent “detectability,” a randomly selected protein must be present at nearly
40,200 copies per cell in the low loading group versus 24,650 copies per cell at high loading (95% confidence interval for the difference
11,150 to 20,470).
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dynamic sampling, ion source, MS1 signal, MS2 signal, and
peptide identifications), each designed to monitor the per-
formance of a different aspect of the LC-MS platform (Table
II). These metrics were computed for the yeast proteome

reference data set. The 15 metrics showing the highest vari-
ation across the yeast reference data set are shown in Table
II, and four of these (C-3A, C-2A, DS-2B, and IS-3B) are
reported for individual instruments in Table I.

TABLE II
Metrics for differential diagnosis of LC-MS performance issues

ID’d, identified; peps, peptides; dev, deviation; ID, identification; S/N, signal to noise ratio.

Metric codea Description of metrica

Study 6 (unspiked yeast,
120 ng) Study 8 (120 ng) Study 8 (600 ng)

Mean
Mean

intralab
%dev

Interlab
%dev Mean

Mean
intralab
%dev

Interlab
%dev Mean

Mean
intralab
%dev

Interlab
%dev

A. LTQs
Chromatography

C-2A Retention period over which 50% of peps
were ID’d (min)

28.4 3.0 4.8 27.2 3.4 6.1 33.7 1.4 8.3

C-2B Peptide ID rate during C-2A 46.4 4.4 5.5 51.5 3.1 30.0 61.7 1.8 26.3
C-3A Median peak width for unique peps (s) 22.2 0.6 8.0 19.5 1.4 58.3 18.9 0.8 54.6

Dynamic sampling
DS-1 Median ratio of peps identified once/twice 8.3 7.2 16.1 7.4 4.3 35.0 6.9 2.8 41.6
DS-1B Median ratio of peps identified

twice/thrice
5.1 12.2 16.6 6.6 10.2 24.6 5.5 7.0 22.4

DS-2A No. MS1 scans taken over C-2A 541.0 2.2 2.6 715.7 3.8 21.8 959.6 1.6 22.0
DS-2B No. of MS2 spectra produced over C-2A 4,195.7 3.2 0.9 3,998.2 3.3 2.7 5,192.2 1.7 4.5

Ion source
IS-1A Count where MS1 signal jumped �10� in

adjacent full scans
0.0 0.0 0.0 0.0 0.0 0.0 3.7 66.7 0.0

IS-1B Count where MS1 signal fell �10� in
adjacent full scans

0.0 0.0 0.0 0.0 0.0 0.0 4.0 66.7 0.0

IS-2 Median precursor m/z for IDs 637.2 0.6 0.4 612.5 0.8 4.2 670.1 0.3 5.2
IS-3B Ratio of 3�/2� for all IDs 0.3 7.0 26.9 0.3 3.1 27.0 0.4 5.7 16.8

MS1
MS1-1 MS1 ion injection time (ms) 3.6 13.6 32.9 5.2 1.9 44.8 1.3 0.0 43.3
MS1-2A Median MS1 S/N value for spectra up to

and including C-2A
127.2 15.0 39.5 104.1 9.1 43.9 159.2 6.2 36.5

MS2
MS2-2 Median S/N for ID’d MS2 spectra 62.0 2.8 13.8 82.1 3.2 73.2 142.8 1.2 51.8

Peptide identification
P-2C No. of unique tryptic peps 2,566.2 2.2 3.9 2,717.9 4.8 27.6 3,988.4 1.9 20.4

Median 3.0 5.5 3.2 27.0 1.8 22.0
B. Orbitraps

Chromatography
C-2A Retention period over which 50% of peps

were ID’d (min)
27.1 3.3 12.6 30.1 1.9 15.3 36.3 1.1 12.1

C-2B Peptide ID rate during C-2A 65.6 3.7 13.2 73.2 2.4 17.6 72.6 1.9 26.3
C-3A Median peak width for unique peps (s) 18.4 1.6 11.2 14.9 0.7 20.0 15.4 0.5 23.2

Dynamic sampling
DS-1 Median ratio of peps identified once/twice 17.8 3.6 20.5 21.1 5.5 28.7 19.1 5.3 18.7
DS-1B Median ratio of peps identified

twice/thrice
7.5 11.2 26.6 6.2 7.7 5.7 5.4 7.7 7.5

DS-2A No. of MS1 scans taken over C-2A 529.0 3.3 11.3 656.9 2.2 11.0 902.2 0.7 14.0
DS-2B No. of MS2 spectra produced over C-2A 3,988.0 4.0 13.7 4,400.8 1.2 20.7 5,705.6 1.3 20.0

Ion source
IS-1A Count where MS1 signal jumped �10� in

adjacent full scans
32.3 133.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IS-1B Count where MS1 signal fell �10� in
adjacent full scans

24.7 133.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

IS-2 Median precursor m/z for IDs 608.6 0.9 3.9 593.1 0.6 2.1 639.6 0.3 3.3
IS-3B Ratio of 3�/2� for all IDs 0.3 6.3 56.4 0.2 4.8 21.2 0.3 2.7 5.0

MS1
MS1-1 MS1 ion injection time (ms) 85.7 5.0 39.3 109.3 6.0 28.0 29.8 4.4 33.7
MS1-2A Median MS1 S/N value for spectra up to

and including C-2A
481.9 7.5 37.7 574.4 3.4 27.6 652.0 2.4 16.0

MS2
MS2-2 Median MS2 S/N for IDs 66.6 5.0 34.1 76.4 5.0 33.4 143.6 2.4 25.3

Peptide identification
P-2C No. of unique tryptic peps 3,463.8 4.2 22.8 4,329.3 1.8 26.8 5,069.1 0.8 22.4

Median 4.2 13.7 2.2 20.0 1.3 16.0

a A series of metrics (see supplemental Section G and the accompanying study by Rudnick et al. (32)) was computed (from the historical
benchmarking data sets described herein) to demonstrate average values obtained for both the LTQ instruments (part A) and the Orbitrap
instruments (part B). Intra- and interlaboratory variation is also shown.
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The performance metrics can be used to diagnose the
underlying cause when suboptimal data are obtained. For
example, early in the course of these experiments, it was
noted that data from the LTQ@73 instrument (laboratory iden-
tities are coded numerically) consistently produced fewer
peptide identifications than the other instruments in the study.
Once the performance metrics were calculated, it became
apparent that the retention period over which 50% of pep-
tides were identified (performance metric C-2A) on LTQ@73
was significantly shorter than the average for the other LC-
MS/MS platforms. In the affected data, this prime zone for
peptide identification lasted only 21.93 min for LTQ@73 com-
pared with an average of 31.03 min for the other platforms,
indicating a contraction of the chromatography. Upon closer
examination of the chromatography system, a degraded
pump seal and contaminated check valve were identified
despite no indication of performance degradation in mea-
sured flow rate or pressure. Following repair of the HPLC
system, manual recalibration of the flow rates, and implemen-
tation of a lower flow rate for sample loading on the column,
the retention time duration of the inner half of peptide identi-
fications increased to 31.3 min (supplemental Section I).

In the transition from Study 6 (�SOP) to Study 8 (no SOP),
the three instruments that had the most substantial changes
to their procedures increased their numbers of matched
spectra for the 120-ng sample by 56% (LTQ@73), 68%
(Orbitrap@56), and 102% (Orbitrap@86). The other three in-
struments, all of which made more minor deviations from the
SOP, increased or decreased their numbers of matched spec-
tra by �20%. The number of peptides identified for LTQ@73,
Orbitrap@56, and Orbitrap@86 correlated tightly with the me-
dian peak chromatographic width (metric C-3A; Table I, parts
A and B), indicating the importance of this metric in peptide/
protein identification yield. In both of these cases, smaller
dimension packing material was used in these specific labo-
ratories (supplemental Section D), accounting for the differ-
ences in peak widths observed. The sensitivity of Orbitrap@56
and Orbitrap@86 was also further improved by reducing the
column diameters and flow rates from the Study 6 SOP con-
figuration of 100-�m inner diameter at 600 nl/min. In Study 8,
both instruments used 75-�m-inner diameter columns with
flow rates of 200 (Orbitrap@56) and 400 nl/min (Orbitrap@86).
Orbitrap@86 also had a further boost in Study 8 from im-
proved ionization. In Table I, part C, for Study 6, the perform-
ance metrics flagged an ionization issue. Orbitrap@86 pro-
duced far fewer peptide identifications than the other
Orbitraps in the study, and this instrument also showed a
�3-fold reduction in the ratio of 3�/2� peptide ions detected
(Table I, part C, see IS-3B). The identification of triply charged
peptides fell from an average of 30% of doubly charged
peptides on comparable instruments to less than 10%, sug-
gesting a problem during ionization.

Yeast Performance Standard Can Be Spiked with Exoge-
nous Proteins to Assess Detection Efficiency—Western blot-

ting is semiquantitative (16); hence, although we see good
general correlation between protein copy number estimates
and LC-MS detection efficiency (Fig. 2), we cannot determine
the relationship between absolute protein concentrations and
LC-MS detection efficiency using only the yeast proteins. To
further quantify the detection sensitivity across the platforms,
we spiked 48 human proteins (Sigma UPS1) into the yeast
performance standard at a range of concentrations (0, 0.2,
0.74, 2.2, 6.7, and 20 fmol/�l) and determined the detection
efficiency of these 48 equimolar proteins in the yeast matrix
(Fig. 3). As expected, the number of human proteins detected
increases with spike concentration (Fig. 3a). As the concen-
tration of the spike proteins increases, the instruments
showed a gradual decline in the number of yeast peptides/
proteins identified, potentially due to ion suppression or com-
petition with spiked peptides for MS/MS sequencing time
(Fig. 3, b and c).

Yeast Standard, Spiked with Human Proteins, Can Be
Used to Benchmark the Power of Proteomics Platforms for
Detection of Differentially Expressed Proteins at Different
Levels of Concentration in Complex Matrix—An increasingly
common goal of proteomics is to discover proteins that are
differentially expressed between two classes of samples.
Frequently, biological samples are subjected to fraction-
ation to improve depth of sampling. Even using standard-
ized protocols, each step of sample processing introduces
preanalytical variation that can lead to false positives and
false negatives in comparative proteomics experiments, es-
pecially in label-free approaches where the two classes of
samples are processed separately in parallel. Because of
the high cost and effort to verify each potentially differen-
tially expressed protein identified (26–28), it is imperative
that the candidate discovery process is designed to mini-
mize the FDR.

We used the Study 6 spiked yeast performance standard
data for determining the FDR in a relatively simple scenario
using a one-dimensional LC-MS/MS platform and a label-
free approach to detect proteins differentially present in the
Study 6 samples. This analysis is presented as a proof of
concept for an approach that can also easily be applied to
more complex analyses, such as those involving multidi-
mensional separations. As described above, in Study 6, the
standard human protein mixture was spiked into the yeast
reference at five different levels. For each spike-in level, we
compared the spiked sample with the unspiked yeast per-
formance standard. Our goal was to detect the “differen-
tially expressed” proteins between the two classes (spiked
versus unspiked); because the matrix (yeast performance
standard) was identical among all of the samples, only the
spiked-in human proteins were differentially present.
Hence, yeast proteins appearing as biomarkers are a meas-
ure of the false positive rate. Similarly, human proteins that
the experimental work flow fails to identify as biomarkers
provide a measure of the false negative rate.
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For each sample, we used the data resulting from all 21
independent LC-MS/MS replica runs (nine from LTQ instru-
ments and 12 from Orbitrap instruments). The data were
analyzed using the SASPECT method (25), which uses a
probability model to make inferences about protein abun-
dances based on peptide detection. Permutation testing is
used to estimate the FDR. The results for FDR �0.01 are
shown in Table III. Not surprisingly, the more abundant the
human proteins are, the easier they can be detected as
differential. For the lowest spike-in level (0.25 fmol/�l), we
could not detect any of the human proteins as differential,
whereas for the highest spike-in level (20 fmol/�l), we are
able to correctly identify 40 of 48 spiked-in proteins as
differential.

DISCUSSION

The major purpose of this study was to provide a well char-
acterized complex proteome performance standard (and an
associated reference data set) for LC-MS benchmarking and to
make this material available to the proteomics community for
providing a means for comparing performance of LC/MS/MS
platforms (i) over time (as a quality control), (ii) after the addition
of new technologies (to evaluate their effectiveness compared
with current technologies), and (iii) between laboratories (to
inform optimization and troubleshooting). Although our studies
were focused on commonly used ion trap instruments, the
reference sample can be applied to any platform of interest to
benchmark performance over time or between laboratories. For
example, although our studies focused on CID for the MS/MS

FIG. 3. Detection efficiency of human proteins (UPS1) spiked into yeast background. This figure summarizes detection of UPS1
(supplemental Section E) and yeast proteins in the spiking experiments of Study 6. For all panels, the result of each RPLC run is indicated
by a “�” plotting symbol; colors denote different instruments. Plotting symbols have been offset to avoid overlap of identical values.
Protein detection is defined as observing two or more peptides mapping to the same protein (in a single RPLC run). On the x axis, “Spike
concentration” refers to the concentration of the 48 equimolar human proteins (UPS1) spiked into the yeast matrix. Also on the x axis,
“Yeast” refers to the unspiked matrix (i.e. 0 fmol/�l UPS1). a shows that the number of detected UPS1 proteins increases with increasing
spike concentration. Note that at an equimolar spike concentration of 2.2 fmol/�l all instruments detect at least one UPS1 protein in each
run. b and c show, respectively, the total number of yeast proteins and peptides detected per RPLC run. Different instruments show large
variation in both the number of proteins/peptides detected and in the response to increasing spike concentration (p � 0.0001).
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analysis, in view of the recent demonstrations of the comple-
mentary value of CID and electron transfer dissociation in pro-
teome analyses (29, 30), it may be of interest to use the per-
formance standard to further evaluate these two approaches.

Of note, the yeast performance standard is now the only
true biological performance standard available as a well
characterized preparation (obtainable from NIST; see “Ex-
perimental Procedures”). Individual laboratories using com-
mon ion trap instruments can now analyze the performance
standard and determine how their platforms perform relative
to the reference data summarized in this study, providing a
measure of how their LC-MS platforms are performing rel-
ative to those in other laboratories in the community. For
example, one can determine how many peptides and pro-
teins their LC-MS system identifies from the yeast reference
and how deeply (CN50) and reproducibly their platform
samples the proteome; these results can be compared with
the data described in this study. If the results differ signifi-
cantly and the new data exceed the performance of the
reference data, then a comparison of the methods used
should reveal parameters that further optimize LC-MS per-
formance in the community. If the results show subpar
performance compared with the reference data set, this will
facilitate the correction of potential underlying problems.
Application of the performance metrics (Table II and the
accompanying study by Rudnick et al. (32)) will facilitate the
differential diagnosis of underlying problems as illustrated in
this study.

The one-dimensional LC-MS/MS platforms we used are
the simplest of shotgun analysis systems and represent the
minimal depth of proteome coverage available with current
methods. Multidimensional LC-MS/MS would substantially
increase the numbers of identifications achieved. Because
the focus of the CPTAC interlaboratory studies described
here was on the performance of the reverse phase LC-

MS/MS platform, we did not attempt to incorporate multi-
dimensional peptide separations. (The combination of dif-
ferent peptide separation steps would have greatly
complicated interpretation of sources of system variability.)
Nevertheless, the yeast reference is well suited to bench-
mark more complex work flows that provide more in-depth
proteome coverage (e.g. combining an upstream protein or
peptide fractionation step with LC-MS/MS). For example,
the CN50 value (Fig. 2 and Table I) associated with a given
experimental work flow may serve as a useful performance
metric for comparisons between alternative work flows and
would also be a useful means of assessing the enhance-
ment of proteome coverage by multidimensional protein
and peptide fractionation steps.

As discussed elsewhere (2, 3), there is a need for multiple
types of proteomics reference materials. For example, al-
though yeast provides an invaluable complex performance
standard, the “shape” (i.e. the abundance range of the
constituent proteins) of the yeast proteome is not identical
to all biological matrices (e.g. plasma), and optimization of
some performance characteristics is likely to be context-
specific. Additionally, the yeast performance standard is not
useful for testing the performance of species-specific tech-
nologies, such as the immunodepletion columns designed
to remove abundant proteins from human plasma (31) (un-
less human plasma is spiked into the yeast proteome).
Hence, it would be of great value to the community to have
several well characterized types of reference materials so
that an appropriate material could be chosen to match the
target application. Of note, because the abundances of the
majority of the yeast proteins have been estimated (16), one
can also imagine using the yeast performance standard as
the spike. For example, if one wanted to benchmark the
depth of coverage of their work flow in a plasma matrix, a
small amount of the yeast reference could be spiked into the

TABLE III
Use of spiked yeast reference to estimate sensitivity and specificity of biomarker candidate discovery

To demonstrate the utility of the reference proteome for benchmarking performance of biomarker discovery strategies, we used the Study
6 spiked yeast reference data to investigate the power of detecting potential biomarkers under typical case-control settings. The data were
analyzed using the SASPECT method (25), which uses a probability model to make inferences about protein abundances based on peptide
detection. Permutation testing is used to estimate the FDR.

Case sample
No. identified
biomarkersa

No. true
positivesb

No. true
negativesc

No. false
positivesd

No. false
negativese Sensitivityf Specificityg

Study 6 SOP (yeast � 0.25 fmol/�l UPS1) 0 0 2,522 0 48 0.00 1.00
Study 6 SOP (yeast � 0.74 fmol/�l UPS1) 4 4 2,522 0 44 0.08 1.00
Study 6 SOP (yeast � 2.2 fmol/�l UPS1) 25 25 2,522 0 23 0.52 1.00
Study 6 SOP (yeast � 6.7 fmol/�l UPS1) 34 34 2,522 0 14 0.71 1.00
Study 6 SOP (yeast � 20 fmol/�l UPS1) 49 40 2,513 9 8 0.83 �0.99

a Identified biomarkers are proteins with FDR �0.01.
b True positives (TP) are human proteins identified as “biomarkers” in the SASPECT analysis.
c True negatives (TN) are yeast proteins with FDR �0.01.
d False positives (FP) are yeast proteins with FDR �0.01.
e False negatives (FN) are human proteins with FDR �0.01.
f Sensitivity is calculated as TP/(TP � FN).
g Specificity is calculated as TN/(TN � FP).

Yeast Performance Standard

Molecular & Cellular Proteomics 9.2 251



plasma, thus providing several thousand proteins whose
relative abundances are known and whose detection effi-
ciencies could be determined as a metric of performance.

An increasingly common goal of proteomics is to discover
proteins that are differentially expressed between two
classes of biological samples (e.g. treated versus untreated,
case versus control, etc.). In such comparative proteomics
experiments, it is desirable to minimize sources of variation
to maximize the statistical power for detecting proteins that
are differentially present. In such experiments, there are
several types of variation, including biological, preanalytical,
and analytical variation. Biological variation is inherent to
the cell or organism being studied; it is a fact of nature. In
contrast, preanalytical and analytical variations are intro-
duced by our experimental protocols and instruments and
thus to some extent can be manipulated. Preanalytical var-
iation is introduced during sample collection, handling, and
processing upstream of LC-MS, whereas analytical varia-
tion is specifically associated with changes in performance
over time of the LC-MS system. A performance standard
cannot be used to determine biological variation; however,
a performance standard (such as yeast) is invaluable for
measuring analytical and preanalytical variation to evaluate
the effectiveness of interventions designed to minimize this
variation. Where unavoidable variation remains, it is of use
to characterize and measure variation during the course of
an experiment so that it can be accounted for in the data
analysis and interpretation as well as in planning experimen-
tal designs.

The results shown in Table III are presented as a proof of
concept of the benchmarking that can be done using a
spiked performance standard (yeast or other) where the
proteome as been highly characterized. This analysis could
be applied to more complex work flows typically used in
comparative proteomics experiments where greater depth
of coverage is desired; for example, the spiked samples
could be subjected to off-line strong cation exchange chro-
matography prior to LC-MS, and the effect of this additional
processing step on the sensitivity and specificity of detect-
ing differential proteins could be determined and optimized.

Acknowledgments—The CPTAC Network includes: Broad Institute
of MIT and Harvard: Steven A. Carr, Michael Gillette, Karl R. Clauser,
Terri Addona, Susan Abbatiello, Ronald K. Blackman, Jacob D. Jaffe,
Eric Kuhn, Hasmik Keshishian, and Michael Burgess; Buck Institute
for Age Research: Bradford W. Gibson, Birgit Schilling, Jason M.
Held, Bensheng Li, Christopher C. Benz, Gregg A. Czerwieniec, and
Michael P. Cusack; California Pacific Medical Center: Dan Moore;
Epitomics, Inc.: Xiuwen Liu and Guoliang Yu; Fred Hutchinson Cancer
Research Center: Amanda G. Paulovich, Jeffrey R. Whiteaker, Lei
Zhao, ChenWei Lin, Regine Schoenherr, Pei Wang, Peggy L. Porter,
Constance D. Lehman, Diane Guay, JoAnn Lorenzo, Barbara R. Stein,
Marit Featherstone, Lindi Farrell, Stephanie Stafford, and Julie
Gralow; Hoosier Oncology Group: Linnette Lay and Kristina Kirk-
patrick; Indiana University: Randy J. Arnold, Predrag Radivojac, and
Haixu Tang; Indiana University-Purdue University Indianapolis: Jake
Chen, Scott H. Harrison, Harikrishna Nakshatri, and Bryan Schneider;

Lawrence Berkeley National Laboratory: Joe W. Gray, John Conboy,
Anna Lapuk, Paul Spellman, Daojing Wang, and Nora Bayani; Mas-
sachusetts General Hospital: Steven J. Skates and Trenton C. Pul-
sipher; Memorial Sloan-Kettering Cancer Center: Paul Tempst, Hans
Lilja, Mark Robson, James Eastham, Clifford Hudis, Brett Carver,
Josep Villanueva, Kevin Lawlor, Arpi Nazarian, Lisa Balistreri, San San
Yi, Alex Lash, John Philip, Yongbiao Li, Andrew Vickers, Adam Ol-
shen, Irina Ostrovnaya, and Martin Fleisher; Monarch Life Sciences:
Tony J. Tegeler and Mu Wang; National Cancer Institute: Henry
Rodriguez, Tara R. Hiltke, Mehdi Mesri, and Christopher R. Kinsinger;
National Cancer Institute-SAIC, Frederick, MD: Gordon R. Whiteley;
National Institute of Standards and Technology, Gaithersburg, MD:
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